
DRAFT

A tutorial implementation of dynamic pattern unification
A dependently typed programming language implementation pearl

Adam Gundry Conor McBride
University of Strathclyde, Glasgow

{adam.gundry,conor.mcbride} @ strath.ac.uk

Abstract
A higher-order unification algorithm is an essential component
of a dependently typed programming language implementation,
and understanding its capabilities is important if dependently
typed programmers are to become productive. Miller showed
that, for simply typed λ-terms in the pattern fragment (where
metavariables are applied to spines of distinct bound variables),
unification is decidable and most general unifiers exist. We describe
an algorithm for pattern unification in a full-spectrum dependent
type theory with dependent pairs (Σ-types). The algorithm exploits
heterogeneous equality and a novel concept of ‘twin’ free variables
to handle dependency. Moreover, it supports dynamic management
of constraints, postponing equations that fall outside the pattern
fragment in case other equations make them simpler. We aim to
make sense both to language implementors and users, and to this
end present our algorithm as a Haskell program.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Lambda calculus
and related systems; F.3.3 [Logics and Meanings of Programs]:
Studies of Program Constructs—Type structure

General Terms Algorithms, Languages, Theory

Keywords Dependent types, higher-order unification

1. Introduction
Higher-order unification is the problem of finding a substitution
that unifies two λ-calculus terms. Dependently typed programming
languages rely on it for elaborating (typechecking) source programs,
in much the same way as typechecking ML-style languages with
Algorithm W [Milner 1978] makes use of first-order unification
[Robinson 1965]. Languages with a kernel type theory, such as Coq
and Epigram [McBride and McKinna 2004], do not need unification
in the kernel, but they depend on it to elaborate human-readable
syntax. Agda uses higher-order unification for pattern matching and
implicit argument synthesis [Norell 2007].

Programmers in a dependently typed language need to grasp
the capabilities (and in particular, the incapabilities) of unification
if they are to become productive users of the language. Knowing
what to omit, because the machine can reconstruct it for you, is a

[Copyright notice will appear here once ’preprint’ option is removed.]

crucial aspect of writing comprehensible programs. We thus have a
twofold motivation: not only to detail an algorithm for higher-order
unification, for the benefit of language implementors, but also to
explain it to programmers who wish to understand the tools they use.
This paper fills a gap between descriptions of typechecking a kernel
theory [Löh et al. 2010] and elaborating a high-level dependently
typed language [Brady 2012].

Higher-order unification extends first-order unification in that

• terms have a binding structure, so unifiers must respect variable
scope: e.g. λx .α ≡ λx .x may not be solved by [x/α] if the
metavariable α cannot depend on the bound variable x ; and

• terms have a nontrivial equational theory, given by the β- and
η-rules: for example, λf .f ≡ λf .λx .α f x can be solved by
[λg .g/α] as λf .λx .(λg .g) f x =β λf .λx .f x =η λf .f .

Given these complications it is perhaps unsurprising that full higher-
order unification is undecidable [Huet 1973]. Most general unifiers
do not necessarily exist and terms may have infinite sets of unifiers,
though they can be generated by a semidecision procedure [Huet
1975]. Miller [1992] observed that a useful subproblem, unification
in the pattern fragment, is decidable and has unique most general
unifiers if they exist at all. Here metavariables must be applied to
spines of distinct bound variables, so the two previous examples
are included but λx .α x x ≡ λx .x is not; observe that it has two
incompatible solutions [λx .λy .x/α] and [λy .λx .x/α].

Languages with simple pairs or Σ-types (pairs in which the
type of the second component may depend on the value of the first
component) motivate extending the pattern fragment to projections.
For example, consider αHD x ≡ x where postfix HD is first projection.
This does not fall in the original pattern fragment but has most
general solution [(λx .x , β)/α] where β is a fresh variable.

For many applications, the static pattern fragment is overly
restrictive: we often have multiple constraints, some of which fall
into it and some of which do not, but solving those which do may
make others solvable. We therefore need dynamic pattern unification,
which postpones constraints that lie outside the pattern fragment in
case they later become solvable.

Dynamic treatment of constraints is necessary even in first-order
problems, because there is no fixed positional order of constraint
solving that will work in all cases. For example, consider the
problem (α + β, α) ≡ (3, 0) where α and β are natural number
metavariables. If our algorithm always unifies the components of
pairs from left to right, it gets stuck on the constraint α+β ≡ 3. On
the other hand, after solving α ≡ 0, the first constraint computes to
the much easier β ≡ 3. (Clearly, always unifying from right to left
is no better, because it fails if we swap the components of the pairs).
The Coq proof assistant, used as a dependently typed programming
language, suffers from exactly this problem.

1 2012/7/10

1.1 Related work
Since Huet’s seminal work on higher-order unification for simply
typed λ-calculus [Huet 1975], many people have sought to extend it
to dependently typed calculi, in particular for the Edinburgh Logical
Framework [Harper et al. 1993], also known as λΠ-calculus. Elliott
[1990] and Pym [1992] both demonstrated unification algorithms
based on Huet’s, using the fact that dependencies are erasable in
the LF to give notions of ‘type similarity’ (in Pym’s terminology)
that relate the types of terms being unified. Brown [1996] studied
the metatheory of a variant of λΠ-calculus with type similarity, and
used this to re-present unification as a system of reduction rules.

In contrast to Huet-style semidecision procedures, which gen-
erate a sequence of unifiers, much research has been done on
Miller’s pattern unification [Miller 1992], which finds most general
unifiers when they exist. Duggan [1998] generalised the pattern
condition to support System Fω with simple product types. Reed
[2009] described how to apply dynamic pattern unification to LF.
He introduced ‘typing modulo’ (discussed in subsection 1.2) as a
neat simplification of type similarity and similar invariants used
to handle the complications of type dependency. Abel and Pientka
[2011] extended Reed’s algorithm to support λΠΣ-calculus (LF with
Σ-types) and implemented it for the Beluga language.

Separately, languages based on Martin-Löf Type Theory, such
as Agda [Norell 2007], or the Calculus of (Inductive) Constructions,
such as Coq, have developed higher-order unification algorithms.
Here, unlike in LF, we have full-spectrum dependency: metavariables
may stand for types (rather than merely appearing in them), and
dependencies are not erasable as types may be recursively defined
and computed from terms (by large elimination). Thus the work
on unification for LF is not immediately applicable. Pfenning
[1991] extended pattern unification to the Calculus of Constructions,
characterising exactly those terms that fall in the pattern fragment
statically; hence the types can always be unified first.

The present paper builds on the work of Reed [2009] and
Abel and Pientka [2011] to describe unification for a full-spectrum
dependent type theory. Moreover, we seek to lessen the gap between
theory and practice by exhibiting a Haskell implementation of our
algorithm, in the spirit of Nipkow’s Standard ML implementation
of pattern unification for simply typed λ-calculus [Nipkow 1993].

1.2 Heterogeneous equality
We write Π S T as a ‘constructor form’ presentation of the
dependent function space, often written as (x : S) _ T x . Given
the problem Π A B ≡ Π S T , a reasonable step to take is to simplify
it to A ≡ S ,B ≡ T . However, at this stage B : A _ Set and
T : S _ Set have apparently different types, as the equation
between A and S may not be solved immediately. This shows the
need for a heterogeneous notion of equality. In general, we will
need to formulate and solve equations between vectors of terms in a
telescope, where unifying the first n−1 terms will make the types
of the nth terms equal. We maintain the heterogeneity invariant,
that every heterogeneous equation involves types whose equality is
implied by other equations; thus solutions are always homogeneous.

Reed [2009] elegantly dealt with heterogeneity using a weaker
invariant on homogeneous equations, typing modulo, which states
that the two sides are well typed up to the equational theory
of the constraints yet to be solved. However, this means that
if there are blocked constraints left when the algorithm has
terminated, then some solved metavariables may be ill typed (up to
definitional equality). This is problematic for elaboration of a full-
spectrum dependently typed source language. Here typechecking
is interleaved with unification, so if unification creates ill typed
terms we will have problems. The algorithm we present avoids this
difficulty by ensuring that all outputs are well typed, provided it is
given well typed input.

1.3 Intensional vs. extensional equality
Definitional equality is the relation of βδη-convertibility, written
s =βδη t (or simply s = t). For a strongly normalising type theory,
it is easy to test, by checking that s and t have the same normal form
(up to α-equivalence) after computation (β-reduction), expansion
of definitions (δ-expansion) and η-expansion. It is intensional in the
sense that extensionally equal terms need not be definitionally equal:
for example, s = λx .true and t = λx .if x then x else true are
equal on all boolean inputs, but s 6=βδη t . Extensional equality is
undecidable in general (is the function that, given a description of
a Turing machine M and a natural number n, returns whether M
halts within n steps, equal to the constantly false function?).

The algorithm we will describe finds solutions up to the
intensional definitional equality, not extensional equality. Finding
solutions up to extensional equality involves proof search and most
general solutions are not (intensionally) unique. For example, if
α : Bool _ Bool is a metavariable and x :Bool is a variable, the
problem αx ≡ true has unique solution λx .true up to definitional
equality, but other solutions up to extensional equality include
λx .if x then x else true and λx .x ∨ not x .

Most type theories have some internal notion of propositional
equality in which equations can be proved, such as the identity
type in Martin-Löf Type Theory [Martin-Löf and Sambin 1984],
which reflects the definitional equality as a type, or coercion types
in System FC [Sulzmann et al. 2007], where equality evidence is
explicit but in a different syntactic category to terms. Given a type
theory with a sufficiently expressive propositional equality, we could
represent unification problems as types, and unification could deliver
terms as evidence (in the form of equality proofs). However, in this
paper we prefer to make fewer assumptions about the object type
theory to emphasise that our work is more widely applicable.

1.4 Outline
In this paper, we present an algorithm for dynamic pattern unification
for a language with full-spectrum dependent types including Σ-
types. This algorithm is implemented in Haskell.1 Our contributions
include:

• the use of heterogeneous equality constraints, instead of typing
modulo, to maintain a typing discipline suitable for an inten-
sional full-spectrum dependently typed language;

• a notion of ‘twin variables’ used to simplify problems such as
(λx .s : Π A B) ≡ (λx .t : Π S T) heterogeneously when A
and S are intensionally distinct types;

• an account of the context structure suitable for managing
dependency and tracking blocked unification problems; and

• the demonstration of a minimal-commitment strategy that makes
it easy to deliver most general unifiers.

In Section 2, we describe the basic concepts we will use
to implement pattern unification. We sketch the algorithm in
Section 3, along with a high-level specification as rewrite rules
on the metacontext. The actual implementation is in Section 4, and
some concluding remarks form Section 5.

2. Setting the scene
In this section, we introduce the representations of terms and
contexts, give the rules for the type theory in which we will be
solving unification problems, discuss the use of ‘twins’ and recall
some basic definitions about occurrences. These concepts will be
used in section 3, where we specify the unification algorithm.

1 Source code for everything presented here is available from
http://personal.cis.strath.ac.uk/adam.gundry/pattern-unify/

2 2012/7/10

s, t , S , T ::= h ei
i | x .t | Set | Π S T | Σ S T | (s, t)

h ::= x | x́ | x̀ | α
d , e ::= t | HD | TL

∆, Θ ::= · |∆, α : T |∆, α := t : T |∆, ?P
Γ, Φ, Ψ ::= · | Γ, x : T | Γ, x̂ : S‡T

P ::= (s : S) ≡ (t : T) | ∀Γ . P

Figure 1. Syntax

2.1 Term representation
The syntax of terms is given in Figure 1. Since this is a full-
spectrum dependently typed language, types and terms live in a
single syntactic category. Neutral terms are represented in spine
form [Cervesato and Pfenning 2003], allowing easy access to the
head h , which may be a variable x , y , z or a metavariable α, β, γ.
The spine of eliminators ei

i includes both applications to terms t
and projections from Σ-types, written HD for first projection and TL

for second projection. (The mysterious accents on variables will be
discussed in subsection 2.4.)

A telescope Φ = xi :Ti
i

is a vector of name bindings with
corresponding types, where each type Ti may depend on the
variables x0, . . . , xi−1. We write Πx : S .T for Π S (λx .T) and
generalise this to binding a telescope ΠΦ.T . Similarly h Φ is the
application of the head h to the variables bound in Φ. The non-
dependent Π and Σ are S _ T and S × T respectively.

In this representation, terms are always β-normal; this is possible
thanks to hereditary substitution [Watkins et al. 2003], which
evaluates redexes as soon as they are created. We will thus feel
free to write the usual application s t .

Terms are represented using the data type Tm in Figure 2.2 The
Binders Unbound library of Weirich et al. [2011] defines the Bind
type constructor and gives us a cheap locally nameless representation
with operations including α-equivalence and substitution for first-
order datatypes containing terms.

2.2 Contexts and unification problems
A (meta)context ∆ is a list of entries, either metavariables α
(carrying a type and possibly a definition) or unification problems
P . Unification problems have a telescope of parameters Γ, but
metavariables do not need one as they can simply have a Π-type
instead. Scope is managed according to the invariant that each entry
depends only on those that precede it, and in terms, metavariables
are explicitly applied to all the variables they may depend upon.

Unification problems are heterogeneous equations under some
universally quantified variables, written ∀Γ . (s : S) ≡ (t : T).
(We will sometimes omit the parameters and types, writing s ≡ t .)
We have already remarked on the need for the terms being unified to
have different types (subsection 1.2). Problems include a novel form
of universal quantification in order to deal with heterogeneously
equal hypotheses (see subsection 2.4).

For example,

α : Set _ Set, β : Set,

? ∀X :Set _ Set . (αX : Set) ≡ (Xβ : Set)

is a valid metacontext, which declares metavariables α and β and
has a single unification problem with parameter X .

Figure 3 shows the data types representing the metacontext,
unification problems and parameters. The algorithm will move about
in the context, keeping track of its position in traditional zipper

2 Actually, in practice we use a single constructor for all canonical forms,
in order to factor out common patterns in the typechecker. However, the
unification algorithm is written as if Tm was defined in this way, thanks to
pattern synonyms [Aitken and Reppy 1992; McBride 2010].

data Tm = N Head [Elim] -- neutral application
| L (Bind Nom Tm) -- λ-abstraction
| Set -- type of types
| Π Tm Tm -- function space
| Σ Tm Tm -- dependent sum
| Pair Tm Tm -- inhabits Σ

data Head = V Nom Twin | M Nom
data Twin = Only | TwinL | TwinR
data Elim = A Tm | Hd | Tl

(%%) :: Tm→ Elim→ Tm -- elimination
($$) :: Tm→ Tm→ Tm -- application

type Subs = [(Nom,Tm)]
substs :: Subs→ Tm→ Tm -- substitution
compSubs :: Subs→ Subs→ Subs -- composition

type Type = Tm

Figure 2. Term representation and operations

data Dec = HOLE | DEFN Tm
data Entry = MV Nom Type Dec

| Prob Id Problem ProblemState
type MContext = ([Entry], [Either Subs Entry])

data Problem = All Param (Bind Nom Problem)
| Unify Equation

data Equation = (Tm : Type) ≡ (Tm : Type)

data Param = P Type | Type‡Type

Figure 3. Context and problem representation

fashion [Huet 1997], using a pair of lists for entries to the left and
right of the cursor. The list to the right may also contain suspended
substitutions, which will be used in subsection 4.8 to propagate
information about updated metavariables. The ProblemState type
will also be defined in subsection 4.8.

Problems have identifiers Id to record the dependency of one
problem upon the solution of others. The specification will not make
use of them, simply replacing problems with equivalent ones.

2.3 Typing rules
The typing rules are given in Figure 4. This is a minimal type
theory to demonstrate the algorithm; we expect and allow for its
extension with inductive data types and eliminators. We will feel
free to use inductive types such as Bool in examples. The rules
presented here are not syntax-directed, but a typechecker for them
can be implemented using standard techniques [Chapman et al.
2005; Coquand 1996].

In the style of contextual type theory [Nanevski et al. 2008],
we separate the metacontext ∆ (which contains metavariables and
unification problems) from the parameters list Γ (which binds
variables). Unlike contextual type theory, however, we do not
represent metavariable contexts explicitly: they simply have Π-types.
Metavariables can depend only on variables they are applied to.

In the rules, x#Γ means x is fresh for Γ and similarly α#∆
means α is fresh for ∆. Whenever we have ∆ |Γ ` t : T we take it

3 2012/7/10

∆ ` mctx ∆ is a valid metacontext

· ` mctx

∆ |Γ ` s : S ∆ |Γ ` t : T

∆, ?∀Γ . (s : S) ≡ (t : T) ` mctx

α#∆ ∆ | · ` T : Set

∆, α : T ` mctx

α#∆ ∆ | · ` t : T

∆, α := t : T ` mctx

∆ |Γ ` ctx Γ is a valid parameter list in metacontext ∆

∆ ` mctx
∆ | · ` ctx

x#Γ ∆ |Γ ` T : Set

∆ |Γ, x :T ` ctx

x#Γ ∆ |Γ ` S : Set ∆ |Γ ` T : Set

∆ |Γ, x̂ :S‡T ` ctx

∆ |Γ ` t : T term t has type T under ∆ and Γ

∆ |Γ ` ctx

∆ |Γ ` Set : Set

∆ |Γ ` S : Set ∆ |Γ ` T : S _ Set

∆ |Γ ` Π S T : Set

∆ |Γ ` f : Π S T ∆ |Γ ` s : S

∆ |Γ ` f s : T s

∆ |Γ, x :S ` t : T x

∆ |Γ ` λx .t : Π S T

∆ |Γ ` S : Set ∆ |Γ ` T : S _ Set

∆ |Γ ` Σ S T : Set

∆ |Γ ` t : Σ S T

∆ |Γ ` t HD : S

∆ |Γ ` t : Σ S T

∆ |Γ ` t TL : T (t HD)

∆ |Γ ` s : S ∆ |Γ ` t : T s

∆ |Γ ` (s, t) : Σ S T

∆ 3 α : T ∆ |Γ ` ctx

∆ |Γ ` α : T

Γ 3 x :T ∆ |Γ ` ctx

∆ |Γ ` x : T

Γ 3 x̂ :S‡T ∆ |Γ ` ctx

∆ |Γ ` x́ : S

Γ 3 x̂ :S‡T ∆ |Γ ` ctx

∆ |Γ ` x̀ : T

∆ |Γ ` t : S ∆ |Γ ` S =βδηT : Set

∆ |Γ ` t : T

Figure 4. Typing rules

as given that ∆ |Γ ` T : Set. We adopt the inconsistent Set : Set
for simplicity of presentation, but the algorithm we describe can
easily be adapted to a suitable type theory with Σ-types such as
Luo’s Extended Calculus of Constructions [1994]. For brevity, the
typing rules for netural terms are not given in spine form, as this
will be enforced by the syntax in any case.

The judgment ∆ |Γ ` s =βδη t : T means that s and t are
definitionally equal terms of type T , after expanding definitions in
∆. In the algorithm, we will substitute out definitions immediately.

2.4 Twins
In order to implement unification, we will incrementally simplify
unification problems. In a heterogeneous setting, an immediate
question is how to simplify the problem

(f : Π A B) ≡ (g : Π S T).

It would not be type-correct (absent typing modulo) to produce

∀x :A . (f x : Bx) ≡ (gx : T x).

However, we can simplify it to

∀x̂ :A‡S . (f x́ : Bx́) ≡ (gx̀ : T x̀)

and we say x́ and x̀ are twin variables, meaning that they represent
the same variable at two different types. The heterogeneity invariant
(subsection 1.2) means that A and S are constrained to be equal
by problems in the metacontext, but have not yet necessarily been
unified. If the types become definitionally equal, we can replace the
twins with a single variable. On the other hand, the fact that they are
different might not prevent the problem from being solved (if one
of f and g is a constant function, for example).

Twins bind a single name, but occurrences of the variable mark
which twin they refer to. Thus they can be distinguished when
typechecking but substitution must replace them with a single term
(which will be type correct only if the types have been unified). Of
course, twins are bound as parameters of unification problems, not
in terms, so β-reduction never substitutes for twins.

If we were representing unification problems as types, twins
would be modelled as distinct variables plus a proof of their
equality, and replacing them with a single variable would exploit
the elimination principle for equality.

Term equality is tested in the algorithm when typechecking a
candidate solution for a metavariable, but it simply treats twins as
distinct, and blocks until the types are equal. When calculating the
free variables of a term, the twin annotations are ignored.

2.5 Occurrences
In the algorithm we must often distinguish between flexible occur-
rences, when a subterm occurs as an argument to a metavariable,
from rigid occurrences, when it occurs otherwise. For example, in
the term αX _ Y Z , α, Y and Z occur rigidly while X occurs
flexibly. Miller [1992] describes rigid occurrences as permanent, as
opposed to possible, because flexible occurrences might be removed
by substituting for metavariables but rigid occurrences cannot.

A rigid occurrence is strong if it is not an argument to a variable
(so no substitution for variables can remove it). In the previous
example, Y occurs strong rigidly but Z does not. When performing
the occur check before solving a metavariable (to ensure that it does
not occur in its own candidate solution), the problem is unsolvable
if the metavariable occurs strong rigidly. Thus α ≡ α _ α is
unsolvable but ∀y :Bool _ Bool . βy ≡ y(β(λx .x)) is solvable
(by λy .y true, amongst other things).

We write fmv(t) for the set of free metavariables of t , fv(t) for
the free variables and fvrig(t) for the free variables that occur rigidly.
The variables bound by a parameter list Γ are written vars(Γ).

3. Specification of the algorithm
Now that we can represent unification problems in context, we
address the question of how to solve a unification problem. The
idea is always to make small, local changes to the context, each
of which is type-correct, makes the problem easier and preserves
solutions (so that any solution we find is most general). Crucially,
we make no unforced intensional choices: for example, given the
equation αtrue ≡ false, we may not define α by case analysis
on its argument, in case a later equation demands α ≡ λx .false
(which is intensionally distinct).

Those who prefer code over mathematical notation may wish
to read section 4 in parallel with this section, where the algorithm
described here is implemented.

The algorithm is represented in Figures 5–9 as a system of
rewrite rules for transforming the metacontext. These rules are
not deterministic as they permit arbitrary dependency-respecting
permutation and working on problems in any order, but it is easy
to make them deterministic by taking each active problem in turn,
simplifying it by applying rules wherever possible and marking the
problem as blocked when no more rules apply; blocked problems
become active again when changed by substitution.

4 2012/7/10

The rules should all be read as applying under an arbitrary
context suffix, i.e. ∆,∆′ 7→ Θ, θ∆′ if ∆ 7→ Θ and θ is a
substitution taking metavariables in ∆ to their definitions in Θ
(if any). The symbol ⊥ is used to represent failure (an unsolvable
constraint) and > is the empty conjunction (the trivial constraint).
Any variables that appear on the right but not on the left are
implicitly assumed to be freshly generated, so they do not conflict
with any existing names. This can be achieved in the implementation
by threading a name supply to generate fresh names as required.

The overall constraint solving steps (Figure 5) have rules for
simplifying metavariables and problems, along with the main
unification steps. We begin by describing unification, and will return
to the simplification steps in subsection 3.5.

3.1 Unification
The heart of the algorithm is the procedure for solving individual
unification problems. These split into four cases:

• problems that can be decomposed locally by η-expanding
elements of Π or Σ types (Figure 6);

• rigid-rigid equations between two non-metavariables, which can
also be decomposed locally (Figure 6);

• flex-rigid equations between a metavariable and a rigid term
(Figure 7); and

• flex-flex equations between two metavariables (Figure 8).

η-expansion Given an equation between two functions, we have
seen in subsection 2.4 that we can η-expand both sides by
introducing twin variables, even if the domains are different. This
is necessary to avoid losing solutions: for example, αy ≡ λx .α x x
should not be rejected due to the occurrence of α on the right-hand
side! Similarly, we can η-expand pairs by replacing

(u : Σ A B) ≡ (v : Σ S T) with
(uHD : A) ≡ (v HD : S) ∧ (uTL : B(uHD)) ≡ (v TL : T (v HD)).

Rigid-rigid decomposition The simplest steps are those which
decompose a rigid-rigid equation, leaving the context alone (Fig-
ure 6). Here neither side is an applied metavariable, so either the
same symbol appears on both sides, or the equation is unsolvable.
For example, we have seen that given Π A B ≡ Π S T we can
decompose it to A ≡ S ∧ (B : A _ Set) ≡ (T : S _ Set).
Similarly, given xdi

i ≡ xei
i we can generate equations between

the arguments di and ei , insisting that projections match and
unfolding the type of x to determine the types of the arguments.
If we have twin variables at the head, say x́ di

i ≡ x̀ ei
i , we can

proceed in the same way, with different types on each side. Note
that the heterogeneity invariant is maintained by this decomposition.
On the other hand, a mismatched equation like Π A B ≡ Σ S T or
x ≡ y for distinct x and y can never be solved. If any inductive
datatypes have been added to the base type theory, matching type or
value constructors are dealt with by rigid-rigid decomposition.

Flexible problems Once we have finished with rigid-rigid de-
composition, we are left with a collection of flex-flex and flex-
rigid problems (between two applied metavariables, or an applied
metavariable and a rigid term, respectively). We first check whether
there is any pruning to be done (see subsection 3.4), then try to
solve the equation by transforming the context and instantiating
metavariables (Figures 7 and 8). Our approach is always to look at
the metavariable immediately left of the equation and ask “how do
I instantiate this metavariable or move this problem past it?” For
example, from the context ∆, β : S , ?P where β does not occur in
P , we can simply move to ∆, ?P, β : S and continue.

With flex-rigid problems, we might encounter a metavariable that
cannot be instantiated to solve the problem, but cannot be moved

past either (as it occurs in the rigid term). For example, consider

α : Set, β : Set, ? (α : Set) ≡ (β _ β : Set).

Here we have no choice but to pick up β and move it left through
the context until we find α. We represent this by

α : Set, [β : Set]? (α : Set) ≡ (β _ β : Set).

where the context entries in brackets are those that the problem
depends on, and the entry to the left of the brackets is the next one
to be examined by the algorithm. In this case, the problem is now
trivially solvable, giving

β : Set, α := β _ β : Set.

Blocking When moving an equation left in the context, we might
find that we are unable to make further progress without making
an intensional commitment or otherwise losing solutions, so no
rule applies and we have to block instead. This means leaving the
equation in the context, where hopefully other constraints will cause
it to become easier to solve. For example,

∆, α : T _ T _ T , ? ∀x :T . (αx x : T) ≡ (x : T)

must block as the arguments of α are not linear, but if a later
constraint means α does not depend on its first argument, we get

∆, β : T _ T , α := λ .β : T _ T _ T ,

?∀x :T . (βx : T) ≡ (x : T)

and we can resume solving the problem, which will instantiate β
(after moving past α’s definition). If any eliminators of inductive
datatypes have been added to the theory, eliminations of metavari-
ables necessarily lead to blocking.

3.2 Solving flex-rigid problems by inversion
In general, once we have moved a flex-rigid problem to its head
metavariable, and rearranged its dependencies if necessary, we are
in the situation

∆, α : A, ?∀Γ . (αei
i : S) ≡ (t : T)

where we hope to find a value for α that makes the equation hold.
Miller observed that, if the arguments ei

i are a list of distinct
variables xi

i containing all the free variables of t , and α does not
occur in t , then this equation has the unique solution α ≡ λ xi

i .t .
For example, given the context

∆, α : T _ T , ? ∀x :T . (αx : T) ≡ (x : T)

we define α to give

∆, α := λx .x : T _ T , ?∀x :T . (x : T) ≡ (x : T)

where the equation is now reflexive.

Occurs check First, we check whether α occurs strong rigidly in t
(i.e. not as an argument to a variable or metavariable). If so, then the
problem is unsolvable (for example, α ≡ α _ α has no solution).

Pattern condition Second, we check that ei
i is (η-contractible to)

a list of variables xi
i , and that it is linear on the variables that occur

in t . If not, we have to block. For example, αx x ≡ x must block as
we do not know whether α projects its first or second argument, but
αxy x ≡ y can be solved unambiguously by λ y .y . We do not
attempt to eliminate projections here, choosing instead to simplify
metavariables and parameters before starting unification.

Typechecking Finally, we have a candidate solution λ xi
i .t for

α : A, but we must check that it is scope-correct (in case α or any
variables that are not in xi

i occur) and type-correct (as heterogeneity
means it might not be). Since we have already excluded the cases
that are definitely unsolvable, the only thing we can do if not is
block until the candidate solution becomes correct.

5 2012/7/10

Metavariable simplification
∆, α : ΠΦ.Σ S T 7→ ∆, α0 : ΠΦ.S , α1 : ΠΦ.T (α0Φ), α := λΦ.(α0Φ, α1Φ) : ΠΦ.Σ S T

∆, α : ΠΦ.Πx : (ΠΨ.Σ S T).U 7→ ∆, β : ΠΦ.Πy : (ΠΨ.S).Πz : (ΠΨ.T (yΨ)). [(y , z)/x] U ,
α := λΦ.λx .βΦ (λΨ.xΨ HD) (λΨ.xΨ TL) : ΠΦ.Πx : (ΠΨ.Σ S T).U

Problem simplification
∆, ?∀Γ . (t : T) ≡ (t ′ : T ′) 7→ ∆ if ∆ |Γ ` T =βδηT ′ : Set and ∆ |Γ ` t =βδη t ′ : T

∆, ? ∀Γ, x :T . P 7→ ∆, ? ∀Γ . P if x /∈ fv(P)

∆, ?∀Γ, x̂ :S‡T . P 7→ ∆, ? ∀Γ . P if x /∈ fv(P)

∆, ? ∀Γ, x : (ΠΦ.Σ S T) . P 7→ ∆, ? ∀Γ, y : (ΠΦ.S), z : (ΠΦ.T (yΦ)) . [(y , z)/x]P

∆, ? ∀Γ, x̂ :S‡S ′ . P 7→ ∆, ?∀Γ, x :S . [x/x̂]P if ∆ |Γ ` S =βδη S ′ : Set

Unification

∆, ?P 7→ ∆, ?Pi
i

if P 7→d

∧
Pi

i
(see Figure 6)

∆ 7→ ∆′ if ∆ 7→p ∆′ (see subsection 3.4 and Figure 9)

∆, ?∀Γ . αdi
i ≡ βej

j 7→ ∆′ if ∆, ?∀Γ . αdi
i ≡ βej

j 7→ff ∆′ (see Figure 8)

∆, ?∀Γ . αdi
i ≡ t 7→ ∆′ if t is not flexible and ∆, [·]?∀Γ . αdi

i ≡ t 7→fr ∆′

∆, ? ∀Γ . s ≡ t 7→ ∆′ if ∆, ?∀Γ . t ≡ s 7→ ∆′

Figure 5. Constraint solving steps

∀Γ . (f : Π A B) ≡ (g : Π S T) 7→d ∀Γ, x̂ :A‡S . (f x́ : Bx́) ≡ (gx̀ : T x̀)

∀Γ . (s : Σ A B) ≡ (t : Σ S T) 7→d ∀Γ . (s HD : A) ≡ (t HD : S) ∧ ∀Γ . (s TL : B(s HD)) ≡ (t TL : T (t HD))

∀Γ . (Set : Set) ≡ (Set : Set) 7→d >
∀Γ . (Π A B : Set) ≡ (Π S T : Set) 7→d ∀Γ . (A : Set) ≡ (S : Set) ∧ ∀Γ . (B : A _ Set) ≡ (T : S _ Set)

∀Γ . (Σ A B : Set) ≡ (Σ S T : Set) 7→d ∀Γ . (A : Set) ≡ (S : Set) ∧ ∀Γ . (B : A _ Set) ≡ (T : S _ Set)

∀Γ . xdi
i ≡ xei

i 7→d

∧
∀Γ . di ≡ ei

i

∀Γ . x́ di
i ≡ x̀ ei

i 7→d

∧
∀Γ . di ≡ ei

i

∀Γ . s ≡ t 7→d ⊥ if s and t have different rigid head symbols

Figure 6. η-expansion and rigid-rigid decomposition steps

∆, α : T , [Ξ]? ∀Γ . αxi
i ≡ t 7→fr ∆,Ξ, α := λ xi

i .t : T if xi
i is linear on fv(t), α /∈ fmv(Ξ, t) and ∆,Ξ | · ` λ xi

i .t : T

∆, α : T , [Ξ]? ∀Γ . αxi
i ≡ t 7→fr ⊥ if α occurs strong rigidly in t

∆, β : U , [Ξ]?P 7→fr ∆, [β : U ,Ξ]?P if β ∈ fmv(Ξ, P) and β is not the head metavariable of P

∆, β : U , [Ξ]?P 7→fr ∆, [Ξ]?P, β : U if β /∈ fmv(Ξ, P)

∆, ?P ′, [Ξ]?P 7→fr ∆, [Ξ]?P, ?P ′

Figure 7. Flex-rigid unification steps

∆, α : ΠΦ.T , ? ∀Γ . αxi
i ≡ αyi

i 7→ff ∆, β : ΠΨ.T , if xi
i agrees with yi

i on Ψ ⊂ Φ and fv(T) ⊂ vars(Ψ)

α := λΦ.βΨ : ΠΦ.T

∆, α : T , ? ∀Γ . αxi
i ≡ βej

j 7→ff ∆, α := λ xi
i .βej

j : T if xi
i linear on fv(ej

j), α /∈ fmv(β ej
j)

and ∆ | · ` λ xi
i .βej

j : T

∆, α : T , ?∀Γ . αdi
i ≡ βej

j 7→ff ∆′ if ∆, [α : T]? ∀Γ . βej
j ≡ αdi

i 7→fr ∆′

∆, β : U , ?P 7→ff ∆, ?P, β : U if β /∈ fmv(P)

∆, ?P ′, ?P 7→ff ∆, ?P, ?P ′

Figure 8. Flex-flex unification steps

6 2012/7/10

∆, β : T ,Θ, ?∀Γ . αdi
i ≡ t 7→p ∆, γ : U , β := uγ : T , [uγ/β]Θ, ? [uγ/β] (∀Γ . αdi

i ≡ t)

if βej
j occurs rigidly in t and pruneSpine · · (vars(Γ) \ fv(di

i
)) T ej

j 7→ (U , u)

∆, ?∀Γ . αdi
i ≡ t 7→p ⊥ if fvrig(t) 6⊂ fv(di

i
)

pruneSpine Φ Ψ V T · 7→ (ΠΨ.T , λy .λΦ.yΨ) if fv(T) ⊂ vars(Ψ) and Ψ 6= Φ

pruneSpine Φ Ψ V (Π S T) (xei
i) 7→ pruneSpine (Φ, x :S) (Ψ, x :S) V (T x) ei

i if x /∈ V and fv(S) ⊂ vars(Ψ)

pruneSpine Φ Ψ V (Π S T) (s ei
i) 7→ pruneSpine (Φ, y :S) Ψ V (T y) ei

i if fvrig(s) ∩V 6= ∅ or fvrig(S) 6⊂ vars(Ψ)

Figure 9. Pruning

3.3 Solving flex-flex problems by inversion or intersection
A flex-flex equation with different metavariables on both sides is
solved similarly to the flex-rigid case. For example, given

∆, α : T , ?∀Γ . αdi
i ≡ βei

i

we perform the same checks as in subsection 3.2 to see if we can find
a solution for α. If we cannot, we try moving α left in the context
before the metavariable β, and try to solve for β.

In addition, we may have a problem of the form αdi
i ≡ αei

i ,
with the same metavariable on both sides but potentially different
spines of arguments. As usual, we must check that both spines are
lists of variables. If so, we can restrict α to those arguments on
which they agree. For example, a solution of

∆, α : T _ T _ T , ? ∀x :T . ∀y :T . αx x ≡ αy x

is possible only if α does not depend on its first argument, giving

∆, β : T _ T , α := λ .β : T _ T _ T ,

? ∀x :T . (βx : T) ≡ (βx : T).

In LF, one can define intersection for meta-ground spines as well,
but we are not free to do so. For example, αtrue x ≡ αtrue y
does not imply that α is independent of its second argument, as it
might be defined by case analysis on its first argument. (It might not
even have a second argument in the false case!)

3.4 Pruning

Given a problem of the form ∀Γ . αdi
i ≡ t , we must check whether

all the variables of t (which are bound by Γ) occur in di
i
, and

hence are in scope for solutions of α. If any inaccessible variables
occur rigidly, then the equation cannot be solved. If they occur only
flexibly, we have to block, but we might be able to prune some
metavariables to remove the occurrences. For example,

α : Set, ? ∀X :Set . (α : Set) ≡ (X _ X : Set)

is unsolvable but

β : Set _ Set, α : Set,

?∀X :Set . (α : Set) ≡ (βX _ βX : Set)

can be solved only if β does not depend on its argument, giving

γ : Set, β := λ .γ : Set _ Set, α := γ _ γ : Set.

The pruning steps are shown in Figure 9. Before moving the
constraint left in the context with flex-flex or flex-rigid steps, we
traverse t looking for free variables that are not in fv(di

i
). When

we encounter a metavariable, we call pruneSpine Φ Ψ V T ej
j to

prune the set of variables V from the spine ej
j , where T is the

type of the metavariable. This accumulates telescopes of the original
parameters (Φ) and those remaining after pruning (Ψ). If it finds a
variable x /∈ V whose type depends only on remaining parameters,
it leaves the argument alone, whereas if it finds a term containing

variables in V or whose type depends on parameters that have
been removed, it removes it. When it reaches the end of the spine,
and provided the type depends only on remaining parameters, it
returns the restricted type for the metavariable and a solution for the
metavariable given a value of the new type.

Note that this is a partial operation: for example, pruning the
equation ∀x : T . α ≡ β(γx) gets stuck because while α cannot
depend on x , it is not obvious whether β or γ projects it away. (In
particular, the pruned variable x occurs flexibly in an argument to
β.) If pruning gets stuck, we simply apply the other rules as normal,
so the constraint will block due to the occurrence of x .

Pruning allows arguments to be retained only if they are variables,
getting stuck otherwise, because the metavariable being pruned
might be defined by case analysis on the argument (and hence
removing other arguments might lose solutions). For example,
knowing βtrue x cannot depend on x does not mean that β
cannot depend on its second argument. Once again, Miller’s pattern
condition appears: a constraint captures the entire behaviour of a
metavariable only if the metavariable is applied to a list of variables.

3.5 Metavariable and problem simplification
The simplification steps in Figure 5 are intended to be applied
before and during unification, in order to eliminate projections from
Σ-types, reflexive equations and redundant twins.

Metavariable simplification How can we solve the constraint
αHD ≡ s where α : Σ S T ? One option is to extend the pattern
fragment to cover projections, as Duggan [1998] does for System
Fω , but we take the simpler option of aggressively lowering
metavariables to eliminate projections. In this case, replacing α
with the pair (β, γ) of fresh metavariables β : S , γ : T β simplifies
the constraint to β ≡ s which is easily solved.

Similarly, a metavariable α : Πx : Σ S T .U can be replaced
with β : Πx0 :S .Πx1 :T x0. [(x0, x1)/x] U , which will transform
the non-pattern constraint α(y , z) ≡ t into the pattern αy z ≡ t .

These transformations maintain the same set of solutions thanks
to the η-rule for Σ-types, otherwise known as surjective pairing,
(t HD, t TL) =η t . Both of the rules are slightly complicated by the
need to apply under any parameters Φ.

Problem simplification Reflexive equations can simply be re-
moved from the context immediately, rather than invoking the
unification algorithm. Parameters that do not occur in the problem
can be dropped. Similarly to metavariable simplification, if a
parameter has a Σ-type it can be replaced with two parameters
in order to eliminate projections from equations. For example,

∆, ? ∀x :Σ S T . α(x TL) ≡ t becomes
∆, ?∀x0 :S , x1 :T x0 . αx1 ≡ [(x0, x1)/x] t .

Finally, given a pair of twins whose types are definitionally equal,
they can be replaced with a single variable, potentially allowing
further progress. Thus ∀x̂ :S‡S . P becomes ∀x :S . [x/x̂]P . The
substitution [x/x̂] replaces occurrences of x́ and x̀ with plain x .

7 2012/7/10

4. Implementation
Having specified the unification algorithm in the previous section,
we now implement it as a Haskell program. First we describe
the domain-specific language in which we will write the program
(subsection 4.1), then we show how to tackle the different kinds of
unification problems step-by-step. Finally, we implement a simple
way to manage constraint solving by working on the leftmost active
constraint (subsection 4.8).

4.1 The Contextual monad: a DSL for problem solving
We work in a monad, Contextual, which stores the current context
and parameters, generates fresh names when required for going
under binders, and allows errors to be thrown when a unification
problem is unsolvable. It supports the operations shown in Figure 10.

With these operations, we can write a bidirectional typechecker
for the rules in Figure 4, as described by Löh et al. [2010]. This
is based on a typed definitional equality test that η-expands its
arguments and compares the normal forms up to α-equivalence.

There are also commands for recording inactive problems in the
context, and for creating and solving metavariables. When making
a hole of a given type, we supply a continuation that will be given
a metavariable of that type and run with it in scope. We can also
define an unknown metavariable by giving it a value. These both
take a telescope of parameters under which to work.

4.2 Unification
As we have seen, unification splits into four main cases: η-expanding
elements of Π or Σ types, rigid-rigid equations between non-
metavariable terms (Figure 6), flex-rigid equations between a
metavariable and a rigid term (Figure 7), and flex-flex equations
between two metavariables (Figure 8). When the equation is between
two functions, we use twins (see subsection 2.4) to decompose it
heterogeneously. If it is in fact homogeneous, the twins will be
simplified away later.

We will take slight liberties, here and elsewhere, with the Haskell
syntax. In particular, we will use italicised capital letters (e.g. A) for
Haskell variables representing types in the object language, while
sans-serif letters (e.g. A) will continue to stand for data constructors.

unify :: Id→ Equation→ Contextual ()

unify n q@((f : Π A B) ≡ (g : Π S T)) = do
x ← freshNom
let (x́, x̀) = (N (V x TwinL) [],N (V x TwinR) [])
simplify n (Unify q) [Unify ((A : Set) ≡ (S : Set)),
∀x :A‡S .Unify ((f $$x́ : B$$x́) ≡ (g$$x̀ : T $$x̀))]

unify n q@((t : Σ A B) ≡ (w : Σ C D)) =
simplify n (Unify q) [Unify ((a : A) ≡ (c : C))

,Unify ((b : B$$a) ≡ (d : D$$c))]
where (a, b) = (t%%Hd, t%%Tl)

(c, d) = (w%%Hd,w%%Tl)

unify n q@((N (M) :) ≡ (N (M) :)) =
tryPrune n q $ tryPrune n (sym q) $ flexFlex n q

unify n q@((N (M) :) ≡ (:)) =
tryPrune n q $ flexRigid [] n q

unify n q@((:) ≡ (N (M) :)) =
tryPrune n (sym q) $ flexRigid [] n (sym q)

unify n q = rigidRigid q >>=
simplify n (Unify q) ◦map Unify

Here sym swaps the two sides of an equation:

sym :: Equation→ Equation
sym ((s : S) ≡ (t : T)) = (t : T) ≡ (s : S)

Context manipulation:

popL :: Contextual Entry
popR :: Contextual (Maybe (Either Subs Entry))
pushL :: Entry→ Contextual ()
pushR :: Either Subs Entry→ Contextual ()
lookupMeta :: Nom→ Contextual Type

Parameters:

ask :: Contextual [(Nom,Param)]
localParams :: ([(Nom,Param)]→ [(Nom,Param)])→

Contextual a → Contextual a
lookupVar :: Nom→ Twin→ Contextual Type

Fresh name generation and error handling:

freshNom :: Contextual Nom
throwError :: String→ Contextual a
catchError :: Contextual a → (String→ Contextual a)→

Contextual a

Type and equality checking:

equal :: Type→ Tm→ Tm→ Contextual Bool
typecheck :: Type→ Tm→ Contextual Bool

Stashing problems in the context:

active :: Id→ Equation→ Contextual ()
block :: Id→ Equation→ Contextual ()
failed :: Id→ Equation→ String→ Contextual ()
solved :: Id→ Equation→ Contextual ()
simplify :: Id→ Problem→ [Problem]→ Contextual ()

Creating and solving metavariables:

hole :: [(Nom,Type)]→ Type→
(Tm→ Contextual a)→ Contextual a

define :: [(Nom,Type)]→ Nom→ Type→ Tm→
Contextual ()

Figure 10. Operations on Contextual monad

4.3 Rigid-rigid decomposition
A rigid-rigid equation (between two non-metavariable terms) can
either be decomposed into simpler equations or it is impossible to
solve. For example, Π A B ≡ Π S T splits into A ≡ S ,B ≡ T ,
but Π A B ≡ Σ S T cannot be solved.

rigidRigid :: Equation→ Contextual [Equation]
rigidRigid ((Set : Set) ≡ (Set : Set)) = return []

rigidRigid ((Π A B : Set) ≡ (Π S T : Set)) =
return [(A : Set) ≡ (S : Set)

, (B : A _ Set) ≡ (T : S _ Set)]

rigidRigid ((Σ A B : Set) ≡ (Σ S T : Set)) =
return [(A : Set) ≡ (S : Set)

, (B : A _ Set) ≡ (T : S _ Set)]

rigidRigid ((N (V x w) ds : S) ≡ (N (V y w ′) es : T))
| x .

= y = do
X ← lookupVar x w
Y ← lookupVar y w ′

((X : Set) ≡ (Y : Set):) 〈$〉
matchSpine X (N (V x w) []) ds

Y (N (V y w ′) []) es

rigidRigid = throwError "Rigid-rigid mismatch"

8 2012/7/10

When we have the same rigid variable (or twins) at the
head on both sides, we proceed down the spine, demanding that
projections are identical and unifying terms in applications. Note
that matchSpine heterogeneously unfolds the types of the terms
being applied to determine the types of the arguments. For example,
if x : Πa : A.B a _ C then the constraint xs t ≡ xu v will
decompose into (s : A) ≡ (u : A) ∧ (t : Bs) ≡ (v : Bu).

matchSpine :: Type→ Tm→ [Elim]→
Type→ Tm→ [Elim]→
Contextual [Equation]

matchSpine (Π A B) u (A a : ds)
(Π S T) v (A s : es) =

((a : A) ≡ (s : S):) 〈$〉
matchSpine (B$$a) (u$$a) ds (T $$s) (v$$s) es

matchSpine (Σ A B) u (Hd : ds) (Σ S T) v (Hd : es) =
matchSpine A (u%%Hd) ds S (v%%Hd) es

matchSpine (Σ A B) u (Tl : ds) (Σ S T) v (Tl : es) =
matchSpine (B$$a) b ds (T $$s) t es
where (a, b) = (u%%Hd, u%%Tl)

(s, t) = (v%%Hd, v%%Tl)
matchSpine [] [] = return []
matchSpine = throwError "spine mismatch"

4.4 Flex-rigid equations
A flex-rigid unification problem is one where one side is an applied
metavariable and the other is a non-metavariable term. We move
left in the context, accumulating a list of metavariables that the
term depends on (the bracketed list of entries Ξ in the rules). Once
we reach the target metavariable, we attempt to find a solution by
inversion. This implements the steps in Figure 7, as described in
subsection 3.2.

flexRigid :: [Entry]→ Id→ Equation→ Contextual ()
flexRigid Ξ n q@((N (M α) :) ≡ (:)) = do

Γ ← ask
popL>>= \e → case e of

MV β T HOLE
| α .

= β ∧ α ∈ fmv(Ξ)→ pushL e >>
mapM pushL Ξ >>
block n q

| α .
= β → mapM pushL Ξ >>

tryInvert n q T
(block n q >>
pushL e)

| β ∈ fmv(Γ ,Ξ , q) → flexRigid (e : Ξ) n q
→ pushR (Right e)>>

flexRigid Ξ n q

Given a flex-rigid or flex-flex equation whose head metavariable
has just been found in the context, the tryInvert control operator
calls invert to seek a solution to the equation. If it finds one, it
defines the metavariable and leaves the equation in the context (so
the definition will be substituted out and the equation found to be
reflexive by the constraint solver). If invert cannot find a solution, it
runs the continuation.

tryInvert :: Id→ Equation→ Type→ Contextual ()→
Contextual ()

tryInvert n q@((N (M α) es :) ≡ (s :)) T k =
invert α T es s >>= \m → case m of

Nothing→ k
Just v → active n q >>

define [] α T v

Given a metavariable α of type T , spine ei
i and term t , invert

attempts to find a value for α that solves the equation αei
i ≡ t .

It may also throw an error if the problem is unsolvable due to an
impossible (strong rigid) occurrence.

invert :: Nom→ Type→ [Elim]→ Tm→
Contextual (Maybe Tm)

invert α T es t = do
let o = occurrence [α] t
when (isStrongRigid o) $ throwError "occurrence"
case toVars es of

Just xs | o .
= Nothing ∧ linearOn t xs → do

b ← localParams (const []) (typecheck T (λxs. t))
return $ if b then Just (λxs. t) else Nothing
→ return Nothing

Here toVars :: [Elim]→ Maybe [Nom] tries to convert a spine to a
list of variables, and linearOn :: Tm→ [Nom]→ Bool determines
if a list of variables is linear on the free variables of a term. Note
that we typecheck the solution λxs. t under no parameters, so
typechecking will fail if an out-of-scope variable is used.

4.5 Flex-flex equations
A flex-flex unification problem is one where both sides are applied
metavariables. As in the flex-rigid case, we proceed leftwards
through the context, looking for one of the metavariables so we
can try to solve it with the other. This implements the steps in
Figure 8, as described in subsection 3.3.

flexFlex :: Id→ Equation→ Contextual ()
flexFlex n q@((N (M α) ds :) ≡ (N (M β) es :)) = do

Γ ← ask
popL>>= \e → case e of

MV γ T HOLE
| γ .

= α ∧ γ .
= β → block n q >>

tryIntersect α T ds es
| γ .

= α → tryInvert n q T
(flexRigid [e] n (sym q))

| γ .
= β → tryInvert n (sym q) T

(flexRigid [e] n q)
| γ ∈ fmv(Γ , q) → pushL e >>

block n q
→ pushR (Right e)>>

flexFlex n q

When we have a flex-flex equation with the same metavariable
on both sides, αxi

i ≡ αyi
i , where xi

i and yi
i are both lists of

variables, we can solve the equation by restrictingα to the arguments
on which xi

i and yi
i agree (i.e. creating a new metavariable β

and using it to solve α). The tryIntersect control operator tests if
both spines are lists of variables, then calls intersect to generate a
restricted type for the metavariable. If this succeeds, it creates a new
metavariable and solves the old one. Otherwise, it leaves the old
metavariable in the context.

tryIntersect :: Nom→ Type→ [Elim]→ [Elim]→
Contextual ()

tryIntersect α T ds es = case (toVars ds, toVars es) of
(Just xs, Just ys)→ intersect [] [] T xs ys >>= \m →

case m of
Just (U , f)→ hole [] U $ \β →

define [] α T (f β)
Nothing → pushL (MV α T HOLE)

→ pushL (MV α T HOLE)

9 2012/7/10

Given the type of α and the two spines, intersect produces a type
for β and a term with which to solve α given β. It accumulates lists
of the original and retained parameters (Φ and Ψ respectively).

intersect :: Fresh m ⇒ [(Nom,Type)]→ [(Nom,Type)]→
Type→ [Nom]→ [Nom]→
m (Maybe (Type,Tm→ Tm))

intersect Φ Ψ S [] []
| fv(S) ⊂ vars(Ψ) = return $ Just

(ΠΨ .S , \β → λΦ. β$∗$Ψ)
| otherwise = return Nothing

intersect Φ Ψ (Π A B) (x : xs) (y : ys) = do
z ← freshNom
let Ψ ′ = Ψ ++ if x

.
= y then [(z ,A)] else []

intersect (Φ ++ [(z ,A)]) Ψ ′ (B$$var z) xs ys

Note that we have to generate fresh names in case the renamings
are not linear. Also note that the resulting type is well-formed: if the
domain of a Π depends on a previous variable that was removed,
then the renamings will not agree, so it will be removed as well.

4.6 Pruning
When we have a flex-rigid or flex-flex equation, we might be able
to make some progress by pruning the metavariables contained
within it, as described in Figure 9 and subsection 3.4. The tryPrune
control operator calls prune, and if it learns anything from pruning,
leaves the current problem where it is and instantiates the pruned
metavariable. If not, it runs the continuation.

tryPrune :: Id→ Equation→
Contextual ()→ Contextual ()

tryPrune n q@((N (M) ds :) ≡ (t :)) k = do
Γ ← ask
u ← prune (vars(Γ) \\ fv(ds)) t
case u of

d : → active n q >> instantiate d
[] → k

Pruning a term requires traversing it looking for occurrences
of forbidden variables. If any occur rigidly, the corresponding
constraint is impossible. On the other hand, if we encounter a
metavariable, we observe that it cannot depend on any arguments
that contain rigid occurrences of forbidden variables. This can be
implemented by replacing it with a fresh variable of restricted type.
The prune function generates a list of triples (β,U , f) where β is
a metavariable, U is a type for a new metavariable γ and f γ is a
solution for β. We maintain the invariant that U and f γ depend
only on metavariables defined prior to β in the context.

prune :: [Nom]→ Tm→
Contextual [(Nom,Type,Tm→ Tm)]

prune xs Set = return []
prune xs (Π S T) = (++) 〈$〉 prune xs S 〈∗〉 prune xs T
prune xs (Σ S T) = (++) 〈$〉 prune xs S 〈∗〉 prune xs T
prune xs (Pair s t) = (++) 〈$〉 prune xs s 〈∗〉 prune xs t
prune xs (L b) = prune xs =<< (snd 〈$〉 unbind b)
prune xs (N (V z) es)

| z ∈ xs = throwError "pruning error"

| otherwise = concat 〈$〉mapM pruneElim es
where pruneElim (A a) = prune xs a

pruneElim = return []
prune xs (N (M β) es) = do

T ← lookupMeta β
maybe [] (\(U , f)→ [(β,U , f)]) 〈$〉

pruneSpine [] [] xs T es

Once a metavariable has been found, pruneSpine unfolds its type
and inspects its arguments, generating lists of unpruned and pruned
arguments (Φ and Ψ). If an argument contains a rigid occurrence
of a forbidden variable, or its type rigidly depends on a previously
removed argument, then it is removed. Ultimately, it generates a
simplified type for the metavariable if the codomain type does not
depend on a pruned argument.

pruneSpine :: [(Nom,Type)]→ [(Nom,Type)]→
[Nom]→ Type→ [Elim]→
Contextual (Maybe (Type,Tm→ Tm))

pruneSpine Φ Ψ xs (Π A B) (A a : es)
| ¬ stuck = do

z ← freshNom
let Ψ ′ = Ψ ++ if pruned then [] else [(z ,A)]
pruneSpine (Φ ++ [(z ,A)]) Ψ ′ xs (B$$var z) es

| otherwise = return Nothing
where

o = occurrence xs a
o′ = occurrence (vars(Φ) \\ vars(Ψ)) A
pruned = isRigid o ∨ isRigid o′

stuck = isFlexible o ∨ (isNothing o ∧ isFlexible o′)
∨ (¬ pruned ∧ ¬ (isVar a))

pruneSpine Φ Ψ T [] | fv(T) ⊂ vars(Ψ) ∧ Φ 6≡ Ψ =
return $ Just (ΠΨ .T , \v → λΦ. v$∗$Ψ)

pruneSpine = return Nothing

After pruning, we can instantiate a pruned metavariable by moving
left through the context until we find the relevant metavariable, then
creating a new metavariable and solving the old one.

instantiate :: (Nom,Type,Tm→ Tm)→ Contextual ()
instantiate d@(α,T , f) = popL>>= \e → case e of

MV β U HOLE | α .
= β → hole [] T $ \t →

define [] β U (f t)
→ pushR (Right e)>>

instantiate d

4.7 Metavariable and problem simplification
Given a problem, the solver simplifies it according to the rules in
Figure 5, introduces parameters and calls unify from subsection 4.2.
In particular, it removes Σ-types from parameters, potentially elimi-
nating projections, and replaces twins whose types are definitionally
equal with a normal parameter.

solver :: Id→ Problem→ Contextual ()
solver n (Unify q) = isReflexive q >>= \b →

if b then solved n q
else unify n q 8catchError8 failed n q

solver n (All p b) = do
(x , q)← unbind b
case p of
| x /∈ fv(q)→ simplify n (All p b) [q]

P S → splitSig [] x S >>= \m → case m of
Just (y ,A, z ,B , s,)→

solver n (∀y :A. ∀z :B . subst x s q)
Nothing→ localParams (++[(x ,P S)]) $ solver n q

S‡T → equal Set S T >>= \c →
if c then solver n (∀x :S . subst x (var x) q)

else localParams (++[(x ,S‡T)]) $ solver n q

10 2012/7/10

Given the name and type of a metavariable, lower attempts to
simplify it by removing Σ-types, according to the metavariable
simplification rules in Figure 5. If it cannot be simplified, it appends
it to the (left) context.

lower :: [(Nom,Type)]→ Nom→ Type→ Contextual ()
lower Φ α (Σ S T) = hole Φ S $ \s →

hole Φ (T $$s) $ \t →
define Φ α (Σ S T) (Pair s t)

lower Φ α (Π S T) = do
x ← freshNom
splitSig [] x S >>= maybe

(lower (Φ ++ [(x ,S)]) α (T $$var x))
(\(y ,A, z ,B , s, (u, v))→

hole Φ (Πy :A.Πz :B .T $$s) $ \w →
define Φ α (Π S T) (λx .w$$u$$v))

lower Φ α T = pushL (MV α (ΠΦ.T) HOLE)

Both solver and lower above need to split Σ-types (possibly
underneath a bunch of parameters) into their components. For
example, y : Πx : X .Σ S T splits into y0 : Πx : X .S and
y1 : Πx : X .T (y0x). Given the name of a variable and its type,
splitSig attempts to split it, returning fresh variables for the two
components of the Σ-type, an inhabitant of the original type in
terms of the new variables and inhabitants of the new types by
projecting the original variable.

splitSig :: Fresh m ⇒ [(Nom,Type)]→ Nom→ Type→
m (Maybe (Nom,Type,Nom,Type,

Tm, (Tm,Tm)))
splitSig Φ x (Σ S T) = do

y ← freshNom
z ← freshNom
return $ Just (y ,ΠΦ.S , z ,ΠΦ. (T $$var y),

λΦ.Pair (var y$∗$Φ) (var z $∗$Φ),
(λΦ. var x$∗$Φ%%Hd,
λΦ. var x$∗$Φ%%Tl))

splitSig Φ x (Π A B) = do
a ← freshNom
splitSig (Φ ++ [(a,A)]) x (B$$var a)

splitSig = return Nothing

4.8 Solvitur ambulando
We organise constraint solving via an automaton that lazily prop-
agates a substitution rightwards through the metacontext, making
progress on active problems and maintaining the invariant that the
entries to the left include no active problems. This is not the only
possible strategy: indeed, it is crucial for guaranteeing most general
solutions that solving the constraints in any order would produce
the same result.

A problem may be in any of five possible states: Active and
ready to be worked on; Blocked and unable to make progress in
its current state; Pending the solution of some other problems in
order to become solved itself; Solved as it has become reflexive; or
Failed because it is unsolvable. The specification simply removes
constraints that are pending or solved, and represents failed
constraints as failure of the whole process, but in practice it is
often useful to have a more fine-grained representation.

data ProblemState = Active | Blocked | Pending [Id]
| Solved | Failed String

In the interests of simplicity, Blocked problems do not store any
information about when they may be resumed, and applying a
substitution that modifies them in any way makes them Active.

A useful optimisation would be to track the conditions under which
they should become active, typically when particular metavariables
are solved or types become definitionally equal.

The ambulando automaton carries a list of problems that have
been solved, for updating the state of subsequent problems, and a
substitution with definitions for metavariables.

ambulando :: [Id]→ Subs→ Contextual ()
ambulando ns θ = popR>>= \x → case x of

-- if right context is empty, stop
Nothing → return ()

-- compose suspended substitutions
Just (Left θ′) → ambulando ns (compSubs θ θ′)

-- process entries
Just (Right e)→ case update ns θ e of

Prob n p Active → pushR (Left θ)>>
solver n p >>
ambulando ns []

Prob n p Solved→ pushL (Prob n p Solved)>>
ambulando (n : ns) θ

MV α T HOLE → lower [] α T >>
ambulando ns θ

e ′ → pushL e ′ >>
ambulando ns θ

Given a list of solved problems, a substitution and an entry, update
returns a modified entry with the substitution applied and the
problem state changed if appropriate.

update :: [Id]→ Subs→ Entry→ Entry
update θ (Prob n p Blocked) = Prob n p′ k

where p′ = substs θ p
k = if p

.
= p′ then Blocked else Active

update ns θ (Prob n p (Pending ys))
| null rs = Prob n p′ Solved
| otherwise = Prob n p′ (Pending rs)
where rs = ys \\ns

p′ = substs θ p
update e ′@(Prob Solved) = e ′

update e ′@(Prob (Failed)) = e ′

update θ e ′ = substs θ e ′

5. Conclusion
We have presented an implementation of an algorithm for higher-
order dynamic pattern unification in a full-spectrum dependent type
theory. Our approach to problem solving, based on representing
metavariables and problems in an ordered context, allows careful
control over dependency and makes it easy to suspend work on
one problem while we try to solve another. We conclude with brief
remarks on the correctness properties of the algorithm.

Termination Intuitively, the algorithm terminates because each
key step makes the metacontext simpler: either decomposing a
unification problem into smaller components, solving a metavariable
or replacing a metavariable with a metavariable of smaller type.
(Strictly speaking, this depends on strong normalisation, which does
not hold for a Set : Set theory, but would for a consistent theory
with minimal changes to the algorithm.)

Type safety Since we work in small steps, it is easy to verify
that each is type safe. All permutations of the metacontext respect
dependency. Whenever the algorithm instantiates a metavariable,
it does so with a term of the appropriate type. Moreover, every
unification problem is replaced with an equivalent conjunction of
unification problems. Crucially, the algorithm uses heterogeneous

11 2012/7/10

equality to make it easy to represent the telescopes of equations that
arise from dependent arguments, potentially allowing progress on
some equations even if the equation that makes their types equal
is initially blocked. Despite this, and unlike typing modulo, every
solution is well typed up to the definitional equality, making the
algorithm useful when mixing typechecking with elaboration.

Generality We have carefully maintained the invariant that the
algorithm makes no unforced intensional choices: that is, metavari-
ables are solved only if the solution is unique (up to definitional
equality). This corresponds to finding most general unifiers. The
particular strategy for tackling constraints (here leftmost active
constraint first) is inessential: the order in which constraints are
solved must not make a difference to the result, and implementations
are free to make alternative choices, provided all active constraints
are eventually dealt with. Of course, since vectors of equations arise
from telescopes, it will usually make sense to solve the leftmost
equations first so that later equations become homogeneous.

Completeness As we observed in the introduction, full higher-
order unification is undecidable, so our algorithm is incomplete in
general. We conjecture that it is complete for the Miller pattern
fragment (where all metavariables are applied to distinct bound
variables). It goes beyond the pattern fragment in handling Σ-types.
We believe that it handles a sufficiently broad class of problems to
be useful for elaboration of a dependently typed language.

Performance and complexity The algorithm presented here is
optimised for clarity rather than performance, and we have not
considered its algorithmic complexity. A real implementation would
probably need to use a representation of terms with more control
over depth of evaluation, and could record much more precisely
the conditions under which a blocked problem should be resumed
(rather than completely reassessing it whenever it is changed by
a substitution). Similarly, rather than repeatedly checking to see
if the types of metavariables can be simplified, it could eliminate
projections as they arise in unification problems.

5.1 Future work
In this paper, we described unification for a minimal type theory, but
the way is open to extend this to support inductive types and more
advanced features. We plan to implement the algorithm as part of
the next version of the Epigram programming language.

The algorithm makes use of twins, a novel representation of
universally quantified variables in unification problems which have
two intensionally distinct types (until the equation between the
types is solved). It demonstrates the practicality of this concept as an
implementation technique; we leave further consideration of twins’
metatheoretic properties as future work.

Acknowledgments
The first author was supported by the Microsoft Research PhD
Scholarship Programme. Our thanks also go to the authors of the
Ott and lhs2TeX tools used in the production of this paper.

References
A. Abel and B. Pientka. Higher-order dynamic pattern unification for

dependent types and records. In Typed Lambda Calculi and Applications,
TLCA ’11, pages 10–26. Springer, 2011.

W. E. Aitken and J. H. Reppy. Abstract value constructors. Tech. Rep.
92-1290, Department of Computer Science, Cornell University, 1992.

E. Brady. Implementing general purpose dependently typed languages.
Submitted, 2012. URL http://www.cs.st-andrews.ac.uk/~eb/
drafts/impldtp.pdf.

J. J. Brown. Presentations of Unification in a Logical Framework. PhD
thesis, University of Oxford, 1996.

I. Cervesato and F. Pfenning. A linear spine calculus. Journal of Logic and
Computation, 13(5):639–688, 2003.

J. Chapman, T. Altenkirch, and C. McBride. Epigram reloaded: a standalone
typechecker for ETT. In Trends in Functional Programming, TFP ’05,
pages 79–94, 2005.

T. Coquand. An algorithm for type-checking dependent types. Science of
Computer Programming, 26(1):167–177, 1996.

D. Duggan. Unification with extended patterns. Theoretical Computer
Science, 206(12):1 – 50, 1998.

C. Elliott. Extensions and Applications of Higher-Order Unification. PhD
thesis, School of Computer Science, Carnegie Mellon University, 1990.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, 1993.

G. Huet. The undecidability of unification in third order logic. Information
and Control, 22(3):257–267, 1973.

G. Huet. A unification algorithm for typed lambda-calculus. Theoretical
Computer Science, 1(1):27–57, 1975.

G. Huet. The Zipper. Journal of Functional Programming, 7(5):549–554,
1997.

A. Löh, C. McBride, and W. Swierstra. A tutorial implementation of a
dependently typed lambda calculus. Fundamenta Informaticæ, 102(2):
177–207, 2010.

Z. Luo. Computation and Reasoning: A Type Theory for Computer Science.
Clarendon Press, 1994.

P. Martin-Löf and G. Sambin. Intuitionistic Type Theory. Bibliopolis, 1984.
C. McBride. Strathclyde Haskell Enhancement, 2010. URL http://

personal.cis.strath.ac.uk/conor.mcbride/pub/she/.
C. McBride and J. McKinna. The view from the left. Journal of Functional

Programming, 14(1):69–111, 2004.
D. Miller. Unification under a mixed prefix. Journal of Symbolic

Computation, 14(4):321–358, 1992.
R. Milner. A theory of type polymorphism in programming. Journal of

Computer and System Sciences, 17(3):348–375, 1978.
A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory.

ACM Transactions on Computational Logic, 9(3):23:1–23:49, 2008.
T. Nipkow. Functional unification of higher-order patterns. In Logic in

Computer Science, LICS ’93, pages 64–74. IEEE, 1993.
U. Norell. Towards a practical programming language based on dependent

type theory. PhD thesis, Chalmers University of Technology, 2007.
F. Pfenning. Unification and anti-unification in the calculus of constructions.

In Logic in Computer Science, LICS ’91, pages 74–85. IEEE, 1991.
D. Pym. A unification algorithm for the λπ-calculus. International Journal

of Foundations of Computer Science, 3(3):333–378, 1992.
J. Reed. Higher-order constraint simplification in dependent type theory. In

Logical Frameworks and Meta-Languages: Theory and Practice, LFMTP
’09, pages 49–56. ACM, 2009.

J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, 1965.

M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and K. Donnelly.
System F with type equality coercions. In Types in Language Design and
Implementation, TLDI ’07, pages 53–66. ACM, 2007.

K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical
framework I: Judgments and properties. Tech. Rep. CMU-CS-02-101,
School of Computer Science, Carnegie Mellon University, 2003.

S. Weirich, B. A. Yorgey, and T. Sheard. Binders unbound. In International
Conference on Functional Programming, ICFP ’11, pages 333–345.
ACM, 2011.

12 2012/7/10

