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Abstract

We consider the problems of first-order unification and type infer-
ence from a general perspective on problem-solving, namely that of
information increase in the problem context. This leads to a pow-
erful technique for implementing type inference algorithms. We
describe a unification algorithm and illustrate the technique for the
familiar Hindley-Milner type system, but it can be applied to more
advanced type systems. The algorithms depend on well-founded
contexts: type variable bindings and type-schemes for terms may
depend only on earlier bindings. We ensure that unification yields a
most general unifier, and that type inference yields principal types,
by advancing definitions earlier in the context only when necessary.

Categories and Subject Descriptors F.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs—Type structure

General Terms Algorithms, Theory

1. Introduction

Algorithm W is a well-known type inference algorithm for the
Hindley-Milner (HM) system [Damas and Milner 1982; Milner
1978], based on Robinson’s Unification Algorithm [1965]. The
system consists of simply-typed λ-calculus with ‘let-expressions’
for polymorphic definitions. For example,

let i :=λx.x in i i

is well-typed: i is given a polymorphic type, which is instantiated
in two different ways. The syntax of types is

τ ::= α | τ ⊲ τ.

For simplicity, the function arrow ⊲ is our only type constructor.
We let α and β range over type variables and τ and υ over types.

Most presentations of Algorithm W have treated the underlying
unification algorithm as a ‘black box’, but by considering both
together we can give a more elegant type inference algorithm. In
particular, the generalisation step (used when inferring the type of
a let-expression) becomes straightforward (Section 9).
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1.1 Motivating context

Why revisit Algorithm W? As a first step towards a longer-term
goal: explaining how to elaborate high-level dependently typed pro-
grams into fully explicit calculi. Just as W specialises polymorphic
type schemes, elaboration involves inferring implicit arguments
by solving constraints, but with fewer algorithmic guarantees.
Pragmatically, we need to account for stepwise progress in problem
solving from states of partial knowledge. We seek local correctness
criteria for type inference that guarantee global correctness.

In contrast to other presentations of unification and HM type
inference, our algorithm is based on contexts carrying variable
definitions as well as declarations. This avoids the need to represent
substitutions explicitly. (We use them to reason about the system.)

This paper has been a long time brewing. Its origins lie in a
constraint engine cannibalised by McBride from an implementa-
tion of Miller’s ‘mixed prefix’ unification [1992], mutating the
quantifier prefix into a context. McBride’s thesis [1999] gives an
early account of using typing contexts to represent the state of
an interactive construction system, ‘holes’ in programs and proofs
being specially designated variables. Contexts carry an informa-
tion order: increase of information preserves typing and equality
judgments; proof tactics are admissible context validity rules which
increase information; unification is specified as a tactic which
increases information to make an equation hold, but its imple-
mentation is not discussed. This view of construction underpinned
the implementation of Epigram [McBride and McKinna 2004a] and
informed Norell’s Agda implementation [2007]. It is high time we
began to explain how it works and perhaps to understand it.

We are grateful to an anonymous referee for pointing out the work
of Dunfield [2009] on polymorphism in a bidirectional type system.
Dunfield uses well-founded contexts that contain existential type
variables (amongst other things). These variables can be solved,
and there is an informal notion of information increase between
input and output contexts. However, our concerns are different:
whilst Dunfield elaborates a particular approach to bidirectional
polymorphic checking to a larger class of type theories, here we
pursue a methodological understanding of the problem-solving
strategy in Hindley-Milner type inference.

This paper is literate Haskell, with full source code available at
http://personal.cis.strath.ac.uk/∼adam/type-inference/.

1.2 The occurs check

Testing whether a variable occurs in a term is used by both
Robinson unification and Algorithm W. In unification, the check
is (usually) necessary to ensure termination, let alone correctness:
the equation α ≡ α ⊲ β has no (finite) solution because the right-
hand side depends on the left, so it does not make a good definition.



In Algorithm W, the occurs check is used to discover type depen-
dencies just in time for generalisation. When inferring the type
of the let-expression let x := e′ in e, the type of e′ must
first be inferred, then quantified over ‘generic’ type variables, i.e.
those involved with e′ but not the enclosing bindings. The rule in
question, as presented by Clément et al. [1986], is:

A ⊢ e′ : τ ′ Ax ∪ {x : σ} ⊢ e : τ
A ⊢ let x :=e′ in e : τ

σ = gen(A,τ ′)

gen(A, τ ) =

(

∀ ~αi.τ (FV (τ ) \ FV (A) = {α1, · · · , αn})

τ (FV (τ ) \ FV (A) = ∅)
.

The context A is an unordered set of type scheme bindings, with
Ax denoting ‘Aminus any x binding ’: such contexts do not reflect
lexical scope, so shadowing requires deletion and reinsertion.

The ‘let’ rule is the only real complexity in Algorithm W, and as
Milner [1978] wrote, “the reader may still feel that our rules are
arbitrarily chosen and only partly supported by intuition.” The rules
are well-chosen indeed; perhaps we can recover the intuition.

In both cases, the occurs check is used to detect dependencies
between variables. Type variables are traditionally left floating in
space and given meaning by substitution, but by exposing structure
we can manage definitions and dependencies as we go. Recording
type variables in the context is natural when dealing with dependent
types, as there is no distinction between type and term variables, but
it also works well in the simply-typed setting.

2. Unification over a context

We begin by revisiting unification for type expressions containing
free variables. Let us equip ourselves to address the problem—
solving equations—by explaining which types are considered
equal, raising the question of which things a given context admits
as types, and hence, which contexts make sense in the first place.

Γ ⊢ valid

E ⊢ valid
Γ ⊢ valid

Γ, α :=? ⊢ valid
α /∈ Γ

Γ ⊢ valid Γ ⊢ τ type
Γ, α :=τ ⊢ valid

α /∈ Γ

Γ ⊢ τ type

Γ, α :=_,Γ′ ⊢ valid
Γ, α :=_,Γ′ ⊢ α type

Γ ⊢ τ type Γ ⊢ υ type
Γ ⊢ τ ⊲ υ type

.

Γ ⊢ τ ≡ υ

Γ, α :=τ,Γ′ ⊢ valid
Γ, α :=τ,Γ′ ⊢ α ≡ τ

Γ ⊢ τ type
Γ ⊢ τ ≡ τ

Γ ⊢ υ ≡ τ
Γ ⊢ τ ≡ υ

Γ ⊢ τ0 ≡ υ0 Γ ⊢ τ1 ≡ υ1

Γ ⊢ τ0 ⊲ τ1 ≡ υ0 ⊲ υ1

Γ ⊢ τ0 ≡ τ1 Γ ⊢ τ1 ≡ τ2
Γ ⊢ τ0 ≡ τ2

Figure 1. Rules for validity, types and type equivalence

The rules in Figure 1 define a context as a left-to-right list of type
variables, each of which may be declared unknown (written α :=?)
or defined (written α :=τ ). A context is valid if the type τ in every
definition makes sense in its preceding context. For example, the

context α :=?, β :=?, γ :=α⊲β is valid, while α :=β, β :=? is not,
because β is not in scope for the definition of α. This topological
sorting of the dependency graph means that entries on the right are
harder to depend on, and correspondingly easier to generalise, just
by discharging them as hypotheses in the usual way.

Definitions in the context induce a nontrivial equational theory on
types, starting withα ≡ τ for every definition α :=τ in the context,
then taking the congruence closure. Unification is the problem of
making variable definitions (thus increasing information) in order
to make an equation hold. The idea is to decompose constraints on
the syntactic structure of types until we reach variables, then move
through the context and update it to solve the equation.

For example, we might start in context α :=?, β :=?, γ := α ⊲ β
aiming to solve the equation β ⊲α ≡ γ. It suffices to define β :=α,
giving as final judgment α :=?, β :=α, γ :=α ⊲ β ⊢ β ⊲ α ≡ γ.

A context represents a substitution in ‘triangular form’ [Baader and
Snyder 2001], which can be applied on demand. As we proceed
with the development, the context structure will evolve to hold a
variety of information about variables of all sorts and some control
markers, managing the generalisation process.

2.1 Implementation of unification

Figure 2 renders our unification algorithm in Haskell. Algorithm W

has been formally verified in Isabelle/HOL by Naraschewski and
Nipkow [1999], using a counter for fresh name generation and a
monad to propagate failure; we use similar techniques here.

Figure 2(a) implements types as a functor parameterised by a type
of variable names; for simplicity, we use integers. We compute free
type variables using the typeclass FTV with membership function
(∈). The typeclass instances are derived using Foldable, thanks to
a language extension in GHC 6.12 [GHC Team 2009].

Figure 2(b) defines context entries, contexts and suffixes. The types
Bwd and Fwd, whose definitions are omitted, are backwards and
forwards lists with E for the empty list and :< and :> for snoc and
cons respectively. Lists are monoids under concatenation (⊕); the
‘fish’ operator (<><) appends a suffix to a context. We later extend
Entry to handle term variables, so this definition is incomplete.

Figure 2(c) defines the Contextual monad of computations which
mutate the context or fail. The TyName component is the next
fresh name to use; it is an implementation detail not mentioned
in the typing rules. The fresh function generates a fresh name
and appends its declaration to the context. Our choice of TyName
makes it easy to choose a name fresh with respect to a Context.

Figure 2(d) implements onTop, which delivers the typical access
pattern for contexts, locally bringing the top variable declaration
into focus and working over the remainder. The local operation f ,
passed as an argument, may restore the previous entry, or it may
return a context extension (containing at least as much information
as the entry that has been removed) with which to replace it.

Figure 2(e) gives the actual implementations of unification and
solution. Unification proceeds structurally over types. If it reaches
a pair of variables, it examines the context, using onTop to pick
out a variable declaration to consider. Depending on the variables,
it then either succeeds, restoring the old entry or replacing it with a
new one, or continues with an updated constraint.

The solve function is called to unify a variable with a non-variable
type. It works similarly to unify on variables, but must accumulate
a list of the type’s dependencies and push them left through the
context. It also performs the occurs check and calls the monadic
fail if an illegal occurrence (leading to an infinite type) is detected.



data Ty a = V a | Ty a ⊲ Ty a

deriving (Functor,Foldable)

type TyName = Integer

type Type = Ty TyName

class FTV a where

(∈) :: TyName→ a → Bool

instance FTV TyName where

(∈) = (≡)

instance (Foldable t , FTV a)⇒ FTV (t a) where

α ∈ t = any (α ∈) t

(a) Types, type variables, occurs check

data TyDecl = !Type | ?
data TyEntry = TyName := TyDecl

instance FTV TyEntry where

α ∈ ( :=!τ ) = α ∈ τ
α ∈ ( :=?) = False

data Entry = TY TyEntry | . . .
type Context = Bwd Entry

type Suffix = Fwd TyEntry

(<><) :: Context→ Suffix→ Context

Γ <>< E = Γ
Γ <>< (α := d :> Ξ) = Γ :< TY (α := d) <>< Ξ

(b) Contexts and suffixes

type Contextual = StateT (TyName,Context) Maybe

fresh :: TyDecl→ Contextual TyName

fresh d = do (β,Γ)← get

put (succ β,Γ :< TY (β := d))
return β

getContext :: Contextual Context

getContext = gets snd

putContext :: Context→ Contextual ()
putContext Γ = do β ← gets fst

put (β,Γ)

modifyContext :: (Context→ Context)→ Contextual ()
modifyContext f = getContext>>= putContext ◦ f

(c) Context manipulation monad

data Extension = Restore | Replace Suffix

onTop :: (TyEntry→ Contextual Extension)
→ Contextual ()

onTop f = do

Γ :< vD ← getContext

putContext Γ
case vD of

TY αD → do m ← f αD
case m of

Replace Ξ→ modifyContext (<>< Ξ)
Restore → modifyContext (:<vD)

→ onTop f >>modifyContext (:<vD)

restore :: Contextual Extension

restore = return Restore

replace :: Suffix→ Contextual Extension

replace = return ◦ Replace

(d) Processing the context

unify :: Type→ Type→ Contextual ()
unify (τ0 ⊲ τ1) (υ0 ⊲ υ1) = unify τ0 υ0 >> unify τ1 υ1

unify (V α) (V β) = onTop $
λ(γ := d)→ case

(γ ≡ α, γ ≡ β, d ) of

(True, True, )→ restore

(True, False, ? )→ replace (α:=!(V β) :> E)
(False, True, ? )→ replace (β:=!(V α) :> E)
(True, False, !τ )→ unify (V β) τ >> restore

(False, True, !τ )→ unify (V α) τ >> restore

(False, False, )→ unify (V α) (V β) >> restore

unify (V α) τ = solve α E τ
unify τ (V α) = solve α E τ

solve :: TyName→ Suffix→ Type→ Contextual ()
solve α Ξ τ = onTop $
λ(γ := d)→ let occurs = γ ∈ τ ∨ γ ∈ Ξ in case

(γ ≡ α, occurs, d ) of

(True, True, )→ fail "Occurrence detected!"

(True, False, ? )→ replace (Ξ⊕ (α:=!τ :> E))
(True, False, !υ)→ modifyContext (<>< Ξ)

>> unify υ τ
>> restore

(False, True, )→ solve α (γ := d :> Ξ) τ
>> replace E

(False, False, )→ solve α Ξ τ
>> restore

(e) Unification

Figure 2. Haskell implementation of unification



As an example, consider the behaviour of the algorithm when unify
is called to solve α ⊲ β ≡ α′ ⊲ (γ ⊲ γ):

α :=?, β :=?, α′ :=β, γ :=? initially

α :=?, β :=?, α′ :=β, γ :=?, [α ≡ α′]
α :=?, β :=?, α′ :=β, [α ≡ α′], γ :=?
α :=?, β :=?, [α ≡ β], α′ :=β, γ :=?

։ α :=?, β :=α, α′ :=β, γ :=? α ≡ α′

α :=?, β :=α,α′ :=β, γ :=?, [β ≡ γ ⊲ γ]
α :=?, β :=α,α′ :=β, [γ :=? | β ≡ γ ⊲ γ]
α :=?, β :=α, [γ :=? | β ≡ γ ⊲ γ] α′ :=β
α :=?, [γ :=? | α ≡ γ ⊲ γ], β :=α, α′ :=β

։ γ :=?, α :=γ ⊲ γ, β :=α, α′ :=β β ≡ γ ⊲ γ

The constraint decomposes into two constraints on variables. The
first ignores γ, moves past α′ by updating the constraint to α ≡ β,
then defines β := α. The second calls solve, which collects γ in
the dependency suffix, ignores α′, moves past β by updating the
constraint to α ≡ γ ⊲ γ, then defines α after pasting in γ.

3. Modelling statements-in-context

Given this implementation of unification, let us try to understand
it. We would like a general picture of ‘statements-in-context’ that
allows us to view unification and type inference in a uniform
setting. What is the common structure?

A context is a list of declarations assigning properties to names
(in particular, those of type variables). We let Γ,∆,Θ range over
contexts. The empty context is written E. Let VTY be a set of type
variables and DTY the properties assignable to them: the ‘unknown’
property :=? and ‘defined’ properties :=τ , one for each type τ .

Later we introduce corresponding definitions for term variables.
Where needed we letK ∈ {TY, TM} represent an arbitrary sort of
variable. We write xD for an arbitrary property, with x ∈ VK and
D ∈ DK . The set of variables of Γ with sort K is written VK(Γ).

We will build a set S of statements, assertions that can be judged in
contexts. For now, the grammar of statements will be

S ::= valid | τ type | τ ≡ υ | S ∧ S,

meaning (respectively) that the context is valid, τ is a type, the
types τ and υ are equivalent, and both conjuncts hold.

A statement has zero or more parameters, each of which has
an associated sanity condition, i.e. a statement whose truth is
presupposed for the original statement to make sense. The valid
statement has no parameter and hence no sanity conditions. In
τ type, the parameter τ has sanity condition valid. The type
equivalence statement τ ≡ υ has two parameters, with sanity
conditions τ type and υ type respectively. Finally, S ∧ S′ has
parameters (and sanity conditions) taken from S and S′.

Each declaration in the context causes some statement to hold. We
maintain a map J·KK : VK × DK → S from declarations to
statements. (Typically we will omit the subscript K.) The idea is
that JxDK is the statement that holds by virtue of the declaration
xD in the context. For type variables, we define

Jα :=?K 7→ α type
Jα :=τK 7→ α type ∧ α ≡ τ.

We can inspect the context in derivations using the inference rule

LOOKUP
xD ∈ Γ

Γ  JxDK
.

Note the different turnstile in the conclusion of this rule. We write
the normal judgment Γ ⊢ S to mean that the declarations in Γ
support the statement S. We write the neutral judgment Γ  S to
mean that S follows directly from a fact in Γ. Neutral judgments
capture exactly the valid appeals to declarations in the context, just
as ‘neutral terms’ in λ-calculus are applied variables, the ‘atoms’
of terms. Such appeals to the context are the atoms of derivations.

The LOOKUP rule is our only means to extract information from
the context, so we omit contextual plumbing (almost) everywhere
else. For example, embedding neutral judgments into the normal:

NEUTRAL
 S
⊢ S

.

3.1 Validity of contexts

It is not enough for contexts to be lists of declarations: they must
be well-founded, that is, each declaration should make sense in its
context. A context is valid if it declares each name at most once,
and the assigned propertyD is meaningful in the preceding context.
Rules for the context validity statement valid are given in Figure 3.

Γ ⊢ valid

E ⊢ valid
Γ ⊢ valid Γ ⊢ okKD

Γ, xD ⊢ valid
x ∈ VK \ VK(Γ)

Figure 3. Rules for context validity

The map okK : DK → S, for each K ∈ K, associates the
statement of being meaningful, okKD, to each D. For types:

okTY(:=?) 7→ valid
okTY(:=τ ) 7→ τ type

Henceforth we assume that all contexts treated are valid, and ensure
we only construct valid ones. We typically ignore freshness issues,
as our simple counter implementation suffices for most purposes.

3.2 Rules for establishing statements

Figure 4 gives rules for establishing statements other than valid.
We deduce that variables are types by lookup in the context, but we
need a structural rule for the ⊲ type constructor.

τ type τ ≡ υ S ∧ S′

τ type υ type
τ ⊲ υ type

τ type
τ ≡ τ

υ ≡ τ
τ ≡ υ

τ0 ≡ τ1 τ1 ≡ τ2
τ0 ≡ τ2

τ0 ≡ υ0 τ1 ≡ υ1

τ0 ⊲ τ1 ≡ υ0 ⊲ υ1

S S′

S ∧ S′
 S ∧ S′

 S
 S ∧ S′

 S′

Figure 4. Rules for types, equivalence and conjunction

Statement conjunction S ∧ S′ allows us to package multiple facts
about a single variable, with a normal introduction rule (pairing)
and neutral elimination rules (projections). This is but one instance
of a general pattern: we add normal introduction rules for com-
posite forms, but supply eliminators only for statements ultimately
resting on (composite) hypotheses, obtained by LOOKUP. This
forces derivations to be cut-free, facilitating reasoning by induction
on derivations. Adding the corresponding projections for normal
judgments would hamper us in obtaining a syntax-directed rule sys-
tem. In any case, we shall ensure that the corresponding elimination
rules are admissible, as is clearly the case for conjunction.



4. An information order for contexts

The transition from α :=? to α := τ intuitively cannot falsify any
existing equations. More generally, if we rely on the context to tell
us what we may deduce about variables, then making contexts more
informative must preserve derivability of judgments.

Let Γ and ∆ be contexts. A substitution from Γ to ∆ is a map δ
from VTY(Γ) to {τ | ∆ ⊢ τ type}. We could also substitute for
term variables, and give a more general definition, but we omit this
for simplicity. Substitutions act on types and statements as usual.
Composition of substitutions θ, δ is given by (θ · δ)(α) = θ(δα).
The identity substitution is written ι. The substitution [τ/α] maps
α to τ and otherwise acts as ι.

Given δ from Γ to ∆, we write the information increase relation
δ : Γ � ∆ and say ∆ is more informative than Γ if for all
xD ∈ Γ, we have ∆ ⊢ δJxDK. That is, ∆ supports the statements
arising from declarations in Γ. We write Γ � ∆ if ι : Γ � ∆. If
δ : Γ,Γ′ � Θ we write δ|Γ for the restriction of δ to VTY(Γ).

We write δ ≡ θ : Γ � ∆ if δ : Γ � ∆, θ : Γ � ∆ and for all
α ∈ VTY(Γ), ∆ ⊢ δα ≡ θα. We will sometimes just write δ ≡ θ
if the contexts involved are obvious. It is straightforward to verify
that ≡ is an equivalence relation for fixed contexts Γ and ∆, and
that if δ ≡ θ then ∆ ⊢ δτ ≡ θτ for any Γ-type τ .

4.1 Stable statements

A statement S is stable if information increase preserves it, i.e., if

Γ ⊢ S and δ : Γ � ∆ ⇒ ∆ ⊢ δS.

That is, we can extend a simultaneous substitution on syntax to one
on derivations. Since we only consider valid contexts, the statement
valid always holds, is invariant under substitution, hence is stable.

We observe that neutral derivations always ensure stability:

Lemma 1. If Γ  S and δ : Γ � ∆ then ∆ ⊢ δS.

Proof. By induction on derivations. In the case of LOOKUP, it holds
by definition of information increase. Otherwise, the proof is by
a neutral elimination rule, so the result follows by induction, and
admissibility of the corresponding normal elimination rule.

We have a standard way, effective by construction, to prove stability
of most statements: we proceed by induction on derivations. In
the NEUTRAL case, stability holds by Lemma 1. Otherwise, we
check the non-recursive hypotheses are stable and that recursive
hypotheses occur in strictly positive positions, so are stable by
induction. In this way we see that τ type and τ ≡ υ are stable.

Lemma 2 (Conjunction preserves stability). If S and S′ are stable
then S ∧ S′ is stable.

Proof. Suppose S, S′ are stable, Γ ⊢ S ∧ S′, and δ :Γ � ∆. In the
NEUTRAL case, ∆ ⊢ δ(S∧S′) by Lemma 1. Otherwise Γ ⊢ S and
Γ ⊢ S′. By stability, ∆ ⊢ δS and ∆ ⊢ δS′, so ∆ ⊢ δ(S ∧S′).

We shall exploit the preorder structure of �, induced by stability.

Lemma 3. If JxDK is stable for every declaration xD, then the
� relation is a preorder, with reflexivity witnessed by the identity

substitution ι : Γ � Γ, and transitivity by composition:

δ : Γ � ∆ and θ : ∆ � Θ ⇒ θ · δ : Γ � Θ.

Proof. Reflexivity follows immediately by applying the LOOKUP

and NEUTRAL rules. For transitivity, suppose that xD ∈ Γ, then
∆ ⊢ δJxDK since δ : Γ � ∆. Now by stability applied to δJxDK
using θ, we have Θ ⊢ θδJxDK as required.

5. Constraints: problems at ground mode

We define a constraint problem to be a pair of a context Γ and
a statement P , where the sanity conditions on the parameters of
P hold in Γ, but P itself may not. A solution to such a problem
is then an information increase δ : Γ � ∆ such that ∆ ⊢ δP .
In this setting, the unification problem (Γ, τ ≡ υ) stipulates that
Γ ⊢ τ type ∧ υ type, and a solution to the problem (a unifier) is
given by δ : Γ � ∆ such that ∆ ⊢ δτ ≡ δυ.

We are interested in algorithms to solve problems, preferably in as
general a way as possible (that is, by making the smallest infor-
mation increase necessary to find a solution). For the unification
problem, this corresponds to finding a most general unifier. We
say the solution δ : Γ � ∆ is minimal if, for any other solution
θ : Γ � Θ, there exists a substitution ζ : ∆ � Θ such that θ ≡ ζ ·δ
(we say θ factors through δ with cofactor ζ).

Variables can become more informative either by definition or by
substitution. Our algorithms exploit only the former, always choos-
ing solutions of the form ι : Γ � ∆, but we show these minimal
with respect to arbitrary information increase. Correspondingly, we
write Γ �̂ ∆ ⊢ P to mean that (Γ, P ) is a problem with minimal
solution ι : Γ � ∆.

Unsurprisingly, stability permits sound sequential problem solving:

ι : Γ � ∆ ⊢ P ι : ∆ � Θ ⊢ Q
ι : Γ � Θ ⊢ P ∧Q

.

If ∆ solves P then any more informative context Θ also solves P .
More surprisingly, composite problems acquire minimal solutions
similarly, allowing a ‘greedy’ strategy.

Lemma 4 (The Optimist’s lemma). The following is admissible:

Γ �̂∆ ⊢ P ∆ �̂ Θ ⊢ Q
Γ �̂ Θ ⊢ P ∧Q

.

Sketch. Any solution φ : Γ � Φ to (Γ, P ∧Q) must solve (Γ, P ),
and hence factor through ι : Γ � ∆. But its cofactor solves (∆, Q),
and hence factors through ι : ∆ � Θ. For the detailed proof of a
more general result, see Lemma 11.

This sequential approach to problem solving is not the only de-
composition justified by stability. McAdam’s account of unification
[1998] amounts to a concurrent, transactional decomposition of
problems. The same context is extended via multiple different sub-
stitutions, which are then unified to produce a single substitution.

6. The unification algorithm, formally

We now present the algorithm formally. The structural rule ensures
that rigid problems, with ⊲ on each side, decompose into sub-
problems: by the Optimist’s lemma, these we solve sequentially.
Otherwise, we have either two variables, or a variable and a type.
In each case, we ask how the rightmost type variable in the context
helps us, and either solve the problem or continue leftward in the
context with an updated constraint. When solving a variable with a
type, we must accumulate the type’s dependencies as we find them,
performing the occurs check to ensure a solution exists.

The rules in Figure 5 define our unification algorithm. The unify
judgment Γ ։ ∆ ⊢ τ ≡ υ means that given inputs Γ, τ and
υ, satisfying the input sanity condition Γ ⊢ τ type ∧ υ type,
unification succeeds, yielding output context ∆.



The solve judgment Γ | Ξ ։ ∆ ⊢ α ≡ τ means that given inputs
Γ, Ξ, α and τ , solving α with τ succeeds, yielding output context
∆. The idea is that the bar (|) represents progress in examining
context elements in order, and Ξ contains exactly those declarations
on which τ depends. Formally, the inputs must satisfy (†):

α ∈ VTY(Γ), τ is not a variable,
Γ,Ξ ⊢ τ type, Ξ contains only type variable declarations
β ∈ VTY(Ξ)⇒ β ∈ FTV (τ,Ξ).

The set FTV (τ ) records those variables occurring free in type
τ ; the notation extends to (sub-)contexts FTV (Ξ) and composite
objects FTV (τ,Ξ) in the obvious way. Some context entries have
no bearing on the problem at hand. We write x⊥X (x is orthogonal
to set X of type variables) if x is not a type variable or not in X.

The rules DEFINE and EXPAND have symmetric counterparts, iden-
tical apart from interchanging the equated terms in the conclusion.
Usually we will ignore these without loss of generality.

Γ ։ ∆ ⊢ τ ≡ υ

DECOMPOSE
Γ ։ ∆0 ⊢ τ0 ≡ υ0 ∆0 ։ ∆ ⊢ τ1 ≡ υ1

Γ ։ ∆ ⊢ τ0 ⊲ τ1 ≡ υ0 ⊲ υ1

IDLE
Γ, αD ։ Γ, αD ⊢ α ≡ α

DEFINE
Γ, α :=? ։ Γ, α :=β ⊢ α ≡ β

α 6= β

IGNORE
Γ ։ ∆ ⊢ α ≡ β

Γ, xD ։ ∆, xD ⊢ α ≡ β
x ⊥ {α, β}

EXPAND
Γ ։ ∆ ⊢ τ ≡ β

Γ, α :=τ ։ ∆, α :=τ ⊢ α ≡ β
α 6= β

SOLVE
Γ | E ։ ∆ ⊢ α ≡ τ

Γ ։ ∆ ⊢ α ≡ τ
τ not variable

Γ | Ξ ։ ∆ ⊢ α ≡ τ

DEFINES
Γ, α :=? | Ξ ։ Γ,Ξ, α :=τ ⊢ α ≡ τ

α /∈ FTV (τ,Ξ)

IGNORES
Γ | Ξ ։ ∆ ⊢ α ≡ τ

Γ, xD | Ξ ։ ∆, xD ⊢ α ≡ τ
x ⊥ FTV (α, τ,Ξ)

EXPANDS
Γ,Ξ ։ ∆ ⊢ υ ≡ τ

Γ, α :=υ | Ξ ։ ∆, α :=υ ⊢ α ≡ τ
α /∈ FTV (τ,Ξ)

DEPENDS
Γ | βD,Ξ ։ ∆ ⊢ α ≡ τ
Γ, βD | Ξ ։ ∆ ⊢ α ≡ τ

α 6= β, β ∈ FTV (τ,Ξ)

Figure 5. Algorithmic rules for unification

Observe that no rule applies in the case (‡)

Γ, αD | Ξ ։ ∆ ⊢ α ≡ τ with α ∈ FTV (τ,Ξ),

where the algorithm fails. This is an occurs check failure: α and τ
cannot unify if α occurs in τ or in an entry that τ depends on, and
τ is not a variable. Given the single type constructor symbol (the
function arrow ⊲), there are no failures due to rigid-rigid mismatch.
To add these would not significantly complicate matters.

The idea of assertions producing a resulting context goes back
at least to Pollack [1990]. Nipkow and Prehofer [1995] use (un-
ordered) input and output contexts to pass information about
‘sorts’ for Haskell typeclass inference, alongside a conventional
substitution-based presentation of unification.

By exposing the contextual structure underlying unification we
make termination of the algorithm evident. Each recursive appeal
to unification (directly or via the solving process) either shortens
the context left of the bar, shortens the overall context, or pre-
serves the context and decomposes types [McBride 2003]. We are
correspondingly entitled to reason about the total correctness of
unification by induction on the algorithmic rules.

6.1 Soundness and completeness

At present, order in the context is unimportant (providing de-
pendencies are respected) but we will see in Section 8 that the
algorithm does keep entries as far right as possible, which will be
necessary for generality of type inference.

Lemma 5 (Soundness and generality of unification).

(a) Suppose Γ ։ ∆ ⊢ τ ≡ υ. Then VTY(Γ) = VTY(∆)
and Γ �̂ ∆ ⊢ τ ≡ υ.

(b) Suppose Γ | Ξ ։ ∆ ⊢ α ≡ τ . Then VTY(Γ,Ξ) = VTY(∆)
and Γ,Ξ �̂∆ ⊢ α ≡ τ .

Proof. By induction on the structure of derivations. For each rule,
we verify that it preserves the set of type variables and that Γ � ∆.

For minimality, it suffices to take some θ : Γ � Θ such that
Θ ⊢ θτ ≡ θυ, and show θ : ∆ � Θ. As the type variables of
Γ are the same as ∆, we simply note that definitions in ∆ hold as
equations in Θ for each rule that rewrites or solves the problem.

The only rule not in this form is DECOMPOSE, but solutions to
τ0 ⊲ τ1 ≡ υ0 ⊲ υ1 are exactly those that solve τ0 ≡ υ0 ∧ τ1 ≡ υ1,
so it gives a minimal solution by the Optimist’s lemma.

We prove a straightforward lemma about the occurs check, and
hence show completeness of unification.

Lemma 6 (Occurs check). Let α be a variable and τ a non-
variable type such that α ∈ FTV (τ ). There is no context Θ and
substitution θ such that Θ ⊢ θα ≡ θτ or Θ ⊢ θτ ≡ θα.

Proof. Suppose otherwise. Moreover, let Θ contain no definitions
(by extending θ to substitute them out). Now, θα ≡ θτ ensures
θα = θτ , but as α ∈ FTV (τ ) and τ is not α, θτ must be a proper
subterm of itself, which is impossible.

Lemma 7 (Completeness of unification). (a) If θ : Γ � Θ,
Γ ⊢ υ type ∧ τ type and Θ ⊢ θυ ≡ θτ , then there is some
context ∆ such that Γ ։ ∆ ⊢ υ ≡ τ .

(b) Moreover, if θ : Γ,Ξ � Θ is such that Θ ⊢ θα ≡ θτ and the
input conditions (†) are satisfied, then there is some context ∆
such that Γ | Ξ ։ ∆ ⊢ α ≡ τ .

Proof. It suffices to show that the algorithm succeeds for every
well-formed input in which a solution can exist. As the algorithm
terminates, we proceed by induction on its call graph. Each step
preserves solutions: if the equation in a conclusion can be solved,
so can those in its hypothesis.

The only case the rules omit is the case (‡) where an illegal
occurrence of a type variable is rejected. In this case, we are seeking
to solve the problem α ≡ τ in the context Γ, αD | Ξ and we have
α ∈ FTV (τ,Ξ). Substituting out the definitions in Ξ from τ , we
obtain a type υ such that α ∈ FTV (υ), υ is not a variable and
Γ, αD,Ξ ⊢ υ ≡ τ . Now the problem α ≡ υ has the same solutions
as α ≡ τ , but by Lemma 6, there are no such.



7. Specifying type inference

We aim to implement type inference for the Hindley-Milner sys-
tem, so we need to introduce type schemes and the term language.
We extend the grammar of statements to express additions to the
context (binding statements), well-formed schemes, type assign-
ment and scheme assignment. The final grammar will be:

S ::= valid | τ type | τ ≡ υ | S ∧ S
| xD � S | σ scheme | t : τ | s :: σ.

7.1 Binding statements

To account for schemes and type assignment, we need a controlled
way to extend the context. Given statement S and declaration xD,
then we define the statement xD �S, binding x in S, subject toD.

We give a generic introduction rule, but we make use of neutral
elimination only for type variables.

Γ ⊢ okKD Γ, yD ⊢ [y/x]S
Γ ⊢ xD � S

y ∈ VK \ VK(Γ)

 αD � S ⊢ [τ/α]JαDK
 [τ/α]S

D ∈ DTY

The corresponding normal rule is admissible. If Γ ⊢ αD � S by
the introduction rule, then Γ, βD ⊢ [β/α]S where β is fresh. But
Γ ⊢ [τ/α]JαDK implies Γ ⊢ [τ/β]JβDK and hence we can obtain
a proof of Γ ⊢ [τ/α]S by replacing every appeal to LOOKUP β in
the proof of Γ, βD ⊢ [β/α]S with the proof of Γ ⊢ [τ/β]JβDK.
As a consequence, Lemma 1 still holds.

While the introduction rule allows renaming to ensure freshness,
in practice we will ignore this and assume that the bound variable
name is always fresh for the context.

Lemma 8 (Binding preserves stability). If xD is a declaration and
both okKD and S are stable, then xD � S is stable.

Proof. Suppose S is stable, δ : Γ � ∆, x chosen fresh for
Γ and ∆, and Γ ⊢ xD � S. In the NEUTRAL case, the result
follows by Lemma 1. Otherwise, Γ ⊢ okKD and Γ, xD ⊢ S.
By stability and inductive hypothesis, ∆ ⊢ δ(okKD). Now we
have δ : Γ, xD � ∆, x(δD) so we also have ∆, x(δD) ⊢ δS by
stability of S. Hence ∆ ⊢ x(δD)�δS and so ∆ ⊢ δ(xD�S).

We extend the binding notation to Ξ � S, where Ξ is a list of
declarations, by: E �S 7→ S and (Ξ, xD)�S 7→ Ξ� (xD �S).

If S is a statement and C is a sanity condition for one of its
parameters, the statement xD � S has sanity condition xD � C
for the corresponding parameter.

7.2 Type schemes

To handle let-polymorphism, the context must assign type schemes
to term variables, rather than monomorphic types. A type scheme
σ is a type wrapped in one or more ∀ quantifiers or (!· := · in ·)
bindings, with the syntax

σ ::= .τ | ∀α σ | (!α :=τ in σ).

We use explicit definitions in type schemes to avoid the need for
substitution in the type inference algorithm.

Schemes arise by discharging a context suffix (a list of type variable
declarations) over a type, and any scheme can be viewed in this
way. We write (Ξ ⇑ τ ) for the generalisation of the type τ over the

suffix of type variable declarations Ξ, defined by

E ⇑ τ 7→ .τ
α :=?,Ξ⇑ τ 7→ ∀α (Ξ ⇑ τ )
α :=υ,Ξ⇑ τ 7→ (!α :=υ in (Ξ ⇑ τ ))

The statement σ scheme is then defined by

(Ξ ⇑ τ ) scheme 7→ Ξ � τ type.

The sanity condition is just valid, as for τ type.

7.3 Terms and type assignment

Now we are in a position to reuse the framework already intro-
duced, defining the sort TM, with VTM a set of term variables and
x ranging over VTM . Term variable properties DTM are scheme
assignments of the form ::σ, with okTM(::σ) = σ scheme.

Let s, t, w range over the set of terms with syntax

t ::= x | t t | λx.t | let x := t in t.

The type assignment statement t : τ is established by the rules
in Figure 6. It has two parameters t and τ with sanity conditions
valid and τ type respectively. We overload notation to define the
scheme assignment statement t :: σ by

t :: (Ξ ⇑ τ ) 7→ Ξ � t : τ.

Note this gives the parameters t and σ sanity conditions valid and
σ scheme as one might expect. This overloading is reasonable
because the meaning of :: is clear from the context, and the
interpretation of declarations embeds them in statements:

Jx ::σKTM 7→ x :: σ.

t : τ

x :: .υ � t : τ
λx.t : υ ⊲ τ

f : υ ⊲ τ a : υ
fa : τ

s :: σ x ::σ � w : τ
let x :=s in w : τ

t : τ τ ≡ υ
t : υ

Figure 6. Declarative rules for type assignment

The definition of Γ � ∆ requires ∆ to assign a term variable all the
types that Γ assigns it, but allows x to become more polymorphic
and acquire new types. This notion certainly retains stability: every
variable lookup can be simulated in the more general context.
However, it allows arbitrary generalisation of the schemes assigned
to term variables which are incompatible with the known and
intended value of those variables.

As Wells [2002] points out, HM type inference is not in this respect
compositional. He carefully distinguishes principal typings, given
the right to demand more polymorphism, from Milner’s principal
type schemes and analyses how the language of types must be
extended to express principal typings.

We, too, note this distinction. We cannot hope to find principal
types with respect to�, so we will define a subrelation⊑ to capture
Milner’s compromise, requiring that, for δ : Γ � ∆,

x ::σ ∈ Γ ⇒ x ::δσ ∈ ∆.

If Γ ⊑ ∆, then ∆ assigns the same type schemes to term variables
as Γ does (modulo substitution). Since the unification algorithm
ignores term variables, it must preserve this property. This is not
the full story, however; we need to extend the notion of context to
complete the definition of the ⊑ relation.



8. Generalising local type variables

We have previously observed, but not yet exploited, the importance
of declaration order in the context, and that we move declarations
left as little as possible. Thus rightmost entries are those most local
to the problem we are solving. This will be useful when we come
to implement type inference for the ‘let’ construct, as we want to
generalise over ‘local’ type variables but not ‘global’ variables.

In order to keep track of locality in the context, we need another
kind of context entry: the # separator. We add a new validity rule

Γ ⊢ valid
Γ# ⊢ valid

.

We must then refine the ⊑ relation to respect these # divisions. Let
⇂ be the partial function from contexts Γ and natural numbers n
which truncates Γ after n # separators, provided Γ contains at least
n such:

Ξ ⇂ 0 7→ Ξ
Ξ # Γ ⇂ 0 7→ Ξ

Ξ # Γ ⇂ n+ 1 7→ Ξ # (Γ ⇂ n)
Ξ ⇂ n+ 1 undefined

We write δ : Γ ⊑ ∆ if δ is a substitution from Γ to ∆ such that, for
all xD ∈ Γ⇂n, we have that ∆⇂n is defined, ∆⇂n ⊢ δJxDK and

x ::σ ∈ Γ ⇒ x ::δσ ∈ ∆.

We thus make the #-separated sections of Γ and ∆ correspond, so
that declarations in the first n sections of Γ can be interpreted over
the first n sections of ∆. As a consequence, ‘moving left of #’ is an
irrevocable commitment. In particular, we note that

ι : Γ#α :=?,∆ ⊑ Γ, α :=?#∆ but ι : Γ, α :=?#∆ 6⊑ Γ#α :=?,∆

Note also that if δ : Γ # Γ′ ⊑ ∆ # ∆′, where Γ and ∆ contain the
same number of # separators, then δ|Γ : Γ ⊑ ∆.

When the contexts contain only type variables, the two relations �
and⊑ coincide; the latter is a proper subrelation if the contexts also
contain term variables. Hence, most of the previous results hold if
we replace � with⊑ throughout.

8.1 Amending the unification algorithm

Replacing � with ⊑ makes extra work only in the unification
algorithm, because it acts structurally on contexts, which may now
contain # separators. We complete the algorithmic rules:

SKIP
Γ ։ ∆ ⊢ α ≡ β
Γ# ։ ∆# ⊢ α ≡ β

REPOSSESS
Γ | Ξ ։ ∆ ⊢ α ≡ τ

Γ # | Ξ ։ ∆# ⊢ α ≡ τ

We must correspondingly update the induction in Lemma 5 to show
that adding the new rules preserves soundness and generality. For
the SKIP rule, correctness follows immediately from this lemma:

Lemma 9. If Γ ⊑̂∆ ⊢ S then Γ# ⊑̂∆# ⊢ S.

Proof. If Γ ⊑ ∆ then Γ# ⊑ ∆# by definition. If ∆ ⊢ S then
∆# ⊢ S since the LOOKUP rule is the only one that extracts
information from the context, and it ignores the #.

Now let θ : Γ# ⊑ Θ #Ξ be such that Θ # Ξ ⊢ S. By definition of ⊑,
we must have θ : Γ ⊑ Θ, so by minimality there exists ζ : ∆ ⊑ Θ
with θ ≡ ζ · ι. Then ζ : ∆# ⊑ Θ # Ξ and we are done.

The REPOSSESS rule is so named because it moves declarations
in Ξ to the left of the # separator, thereby ‘repossessing’ them. To
guarantee a solution most general with respect to ⊑, we show that
Ξ’s leftward journey is really necessary.

Lemma 10 (Soundness and generality of the REPOSSESS rule).
Suppose Γ # | Ξ ։ ∆# ⊢ α ≡ τ . Then VTY(Γ # Ξ) = VTY(∆#)
and Γ # Ξ ⊑ ∆# ⊢ α ≡ τ .

Proof. We extend the structural induction in Lemma 5 with an
extra case. The only proof of Γ # | Ξ ։ ∆# ⊢ α ≡ τ is by
REPOSSESS, so inversion gives Γ |Ξ ։ ∆ ⊢ α ≡ τ . By induction,
VTY(Γ,Ξ) = VTY(∆) and Γ,Ξ ⊑ ∆ ⊢ α ≡ τ .

We immediately observe that Γ # Ξ ⊑ ∆#, ∆# ⊢ α ≡ τ and

VTY(Γ # Ξ) = VTY(Γ,Ξ) = VTY(∆) = VTY(∆#).

For minimality, suppose θ : Γ # Ξ ⊑ Θ # Φ and Θ # Φ ⊢ θα ≡ θτ .
Observe that α ∈ VTY(Γ) and β ∈ VTY(Ξ) ⇒ β ∈ FTV (τ,Ξ)
by the conditions for the algorithmic judgment. Now θα is a Θ-
type and θτ is equal to it, so the only declarations in Φ that θτ
(hereditarily) depends on must be definitions over Θ. But all the
variables declared in Ξ are used in τ , so there is a substitution
ψ : Γ # Ξ ⊑ Θ# that agrees with θ on Γ and maps variables in
Ξ to their definitions in Θ.

Hence ψ : Γ,Ξ ⊑ Θ and Θ ⊢ ψα ≡ ψτ , so by hypothesis
there exists ζ : ∆ ⊑ Θ such that ψ ≡ ζ · ι : Γ,Ξ ⊑ Θ.
Note that ψ ≡ θ : Γ # Ξ ⊑ Θ # Φ. Then ζ : ∆# ⊑ Θ # Φ and
ψ ≡ ζ · ι : Γ # Ξ ⊑ Θ # Φ, so θ ≡ ζ · ι : Γ # Ξ ⊑ Θ # Φ.

9. Type inference problems and their solutions

Type inference involves making the statement t : τ hold, but
unlike unification, the type should be an output of problem-solving
along with the solution context. We need a more liberal definition
than that of constraint problems. We associate a mode with each
parameter in a statement: either ‘input’ or ‘output’. For simplicity,
assume statements always have one parameter of each mode (which
may be trivial or composite). We now extend the apparatus of
minimal solutions to problems with outputs.

What can outputs be, and how can we compare them? An output
set is a set B closed under substitution, such that every context
Γ induces a preorder Γ ⊢ · ⊂ · on B which is congruent with
respect to the definitional equality, i.e. if Γ ⊢ α ≡ τ ∧ β ≡ υ,
then Γ ⊢ b ⊂ c if and only if Γ ⊢ [τ/α]b ⊂ [υ/β]c. This is easily
verified for each preorder we use.

We need subsequent problems to depend on the results of earlier
problems, threading the output from one into the input of the next.
Thus we must index problems to determine the input parameters.

Let A be an output set. An A-indexed problem family Q for B is
an output set B and a family of input parameters for a statement,
indexed by elements of A, such that the simplicity condition holds:
for all a, a′ ∈ A, contexts Γ and output parameter values b ∈ B,

Γ ⊢ a ⊂ a′ ∧ Γ ⊢ Q[a′] b ⇒ Γ ⊢ Q[a] b.

We write Q[a] b for the statement with input at index a and output
value b, and Q[a] for the sanity conditions on the input parameters
at index a. We use Γ ⊢ · ⊂Q · for the preorder on the output set.
The idea behind this contravariant condition is that the preorder
represents specialisation of solutions, so if a problem can be solved
with an input a′ then it can be solved with the more general a.

Now we can generalise the notion of constraint problem and its
solution. An inference problem consists of a context Γ, an A-
indexed problem family Q and an index a ∈ A such that Γ ⊢ Q[a].



A solution of it consists of an information increase δ : Γ ⊑ ∆ and
a value for the output parameter b ∈ B such that ∆ ⊢ (δ(Q[a])) b.

The preorder on outputs induces a preorder on context-output pairs,
with δ : (Γ, a) ⊑ (∆, b) if δ : Γ ⊑ ∆ and ∆ ⊢ δa ⊂ b. We will
look for minimal solutions with respect to this preorder, and write

Γ ◦ Q[a] ⊑̂ ∆ • b if (ι : Γ ⊑ ∆, b) is a solution (i.e. ∆ ⊢ Q[a] b)
and for all solutions (θ : Γ ⊑ Θ, c) we have ζ : (∆, b) ⊑ (Θ, c)
for some ζ such that θ ≡ ζ · ι. As with unification, we only use the
identity substitution but are minimal with respect to any solution.

A problem P forB is a problem family indexed by the unit set with
the trivial preorder. We simply omit the index in this case.

9.1 The Optimist’s lemma

Let P be a problem for A and let Q be an A-indexed family for B.
Then the conjunction ΣPQ is a problem forA×B with statement

(ΣPQ)(a, b) 7→ Pa ∧Q[a] b

and the preorder defined pointwise. This ‘dependent’ generalisation
of P ∧ Q allows the output of P to be threaded into Q. The
Optimist’s lemma correspondingly generalises:

Lemma 11 (The Optimist’s lemma for inference problems).

Γ ◦ P ⊑̂ ∆ • b ∆ ◦Q[b] ⊑̂ Θ • c

Γ ◦ (ΣPQ) ⊑̂ Θ • (b, c)
.

Proof. Since Γ ⊑ ∆ and ∆ ⊑ Θ, we have Γ ⊑ Θ by (updating)
Lemma 3. Furthermore, Θ ⊢ (ΣPQ)(b, c) since Θ ⊢ Q[b] c by
assumption and ∆ ⊢ Pb so stability gives Θ ⊢ Pb.

For minimality, suppose there is a solution (φ : Γ ⊑ Φ, (b′, c′)),

so Φ ⊢ (φP )b′ and Φ ⊢ (φQ)[b′] c′. Since Γ ◦ P ⊑̂ ∆ • b, there
exists ζ : ∆ ⊑ Φ with Φ ⊢ ζb ⊂ b′ and φ ≡ ζ · ι. By the
simplicity condition, Φ ⊢ (φQ)[ζb] c′ and hence Φ ⊢ (ζ(Q[b])) c′.
But ∆ ◦ Q[b] ⊑̂ Θ • c, so there exists ξ : Θ ⊑ Φ such that
Φ ⊢ ξc ⊂ c′ and ζ ≡ ξ · ι. Hence Φ ⊢ ξ(b, c) ⊂ (b′, c′) so
ξ : (Θ, (b, c)) ⊑ (Φ, (b′, c′)), and φ ≡ ζ · ι ≡ (ξ · ι) · ι ≡ ξ · ι.

9.2 The Generalist’s lemma

We have considered problems with abstract inputs and outputs, but
which concrete values do we actually use? We want to solve type
inference problems, so we are interested in types and type schemes.

The statement t :: σ defines a problem for the set of schemes with
preorder given by Γ ⊢ (Ξ ⇑ τ ) ⊂:: (Ψ ⇑ υ) if there is some
ψ : Γ # Ξ ⊑ Γ # Ψ such that Γ # Ψ ⊢ ψτ ≡ υ and ψ|Γ ≡ ι. That is,
Γ ⊢ σ ⊂:: σ

′ if σ is a more general type scheme than σ′.

Since types are just schemes with no quantifiers, we instantiate the
above definition with Ξ = E = Ψ, to get a preorder on types:
Γ ⊢ τ ⊂: υ if Γ ⊢ τ ≡ υ.

Thus the type inference problem is given by a context Γ and a term
parameter t as input to the type assignment statement. Following
the definitions, a solution is an information increase δ : Γ ⊑ ∆ and
a type τ such that ∆ ⊢ τ type ∧ t : τ . A solution with output τ is
minimal if, given any other solution, we can find a substitution that
unifies τ and the other type: that is, τ is a principal type.

In the type inference algorithm, we will use # to determine what can
be generalised, based on the following lemma.

Lemma 12 (The Generalist’s lemma). This rule is admissible:

(Γ#) ◦ (t :) ⊑̂ (∆ # Ξ) • τ

Γ ◦ (t ::) ⊑̂∆ • (Ξ ⇑ τ )
.

Proof. If Γ# ⊑ ∆ #Ξ then Γ ⊑ ∆ by definition. Furthermore,
∆ ⊢ t :: (Ξ ⇑ τ ) is defined to be ∆ ⊢ Ξ � t : τ , which holds
iff ∆ # Ξ ⊢ t : τ .

For minimality, suppose θ : Γ ⊑ Θ is an information increase
and (Ψ ⇑ υ) is a scheme such that Θ ⊢ t :: (Ψ ⇑ υ). Then
Θ,Ψ ⊢ t : υ. Now θ : Γ# ⊑ Θ # Ψ and Θ # Ψ ⊢ t : υ, so by
minimality of the hypothesis there is a substitution ζ : ∆#Ξ ⊑ Θ#Ψ
such that θ ≡ ζ · ι and Θ # Ψ ⊢ ζτ ≡ υ. Then by definition
ζ|∆ : (∆, (Ξ ⇑ τ )) ⊑ (Θ, (Ψ ⇑ υ)) and θ ≡ ζ|∆ · ι : Γ ⊑ Θ.

9.3 The binding lemmas

Just as we have a general notion of conjunction problems, so we
can regard binding statements as problems. There are two ways to
do so, depending on the mode of the bound property. Each has a
corresponding minimality result.

First, if Q is a problem for A, then x ::σ �Q is also a problem for
A where we regard σ as an input. It has statement

(x ::σ �Q)a 7→ x ::σ �Qa

and preorder given by Γ ⊢ a ⊂(x::σ�Q) b if Γ, x :: σ ⊢ a ⊂Q b.
Minimal solutions are found by bringing x into scope temporarily.

Lemma 13. If Ξ does not contain any # separators, then we have:

(Γ, x ::σ) ◦Q ⊑̂ (∆, x ::σ,Ξ) • a

Γ ◦ (x ::σ �Q) ⊑̂ (∆,Ξ) • a
.

Proof. If Γ, x :: σ ⊑ ∆, x :: σ,Ξ then Γ ⊑ ∆,Ξ since nothing in
Ξ can depend on x. If ∆, x :: σ,Ξ ⊢ Qa then ∆,Ξ, x :: σ ⊢ Qa
(permuting the context) and hence ∆,Ξ ⊢ x ::σ �Qa.

If θ : Γ ⊑ Θ is such that Θ ⊢ x ::θσ � (θQ)a′, then by inversion,
Θ, x :: θσ ⊢ (θQ)a′. By minimality of the hypothesis, there is
ζ : ∆, x :: σ,Ξ ⊑ Θ, x :: θσ such that Θ, x :: θσ ⊢ θa ⊂Q a′ and
θ ≡ ζ · ι. Hence ζ : ∆,Ξ ⊑ Θ and Θ ⊢ θa ⊂(x::σ�Q) a

′.

Alternatively, we can regard a type variable binding as being
initially unknown, and obtain the problem α � Q whose output
is a pair of a type and a value in A. The corresponding statement is

(α �Q)(τ, b) 7→ [τ/α](Qb)

and the output preorder is given by Γ ⊢ (τ, a) ⊂(α �Q) (υ, b) if
Γ ⊢ τ ≡ υ and Γ ⊢ [τ/α]a ⊂Q [υ/α]b. Minimal solutions arise
by adding an unknown to the context and returning it as the output:

Lemma 14. (Γ, α :=?) ◦Q ⊑̂ ∆ • b

Γ ◦ (α �Q) ⊑̂∆ • (α, b)

Proof. By hypothesis, ∆ ⊢ Qb so clearly ∆ ⊢ [α/α](Qb).
Moreover, Γ, α :=? ⊑ ∆ so Γ ⊑ ∆. If θ : Γ ⊑ Θ is such that
Θ ⊢ [υ/α]((θQ)c), then Θ ⊢ ([υ/α]θQ)([υ/α]c). By minimality
of the hypothesis with the substitution [υ/α] · θ : Γ, α :=? ⊑ Θ,
there is some ζ : ∆ ⊑ Θ such that Θ ⊢ ζb ⊂Q ([υ/α]c) and
[υ/α] · θ ≡ ζ · ι. Hence ζ : (∆, (α, b)) ⊑ (Θ, (υ, c)).

9.4 Transforming type assignment into type inference

To transform a rule into an algorithmic form, we proceed clockwise
starting from the conclusion. For each hypothesis, we must ensure
that the problem is fully specified, inserting variables to stand for
unknown problem inputs. Moreover, we cannot pattern match on
problem outputs, so we ensure there are schematic variables in
output positions, fixing things up with appeals to unification.



Figure 7 shows the transformed version of the declarative rule
system. The λ-rule now binds a fresh name for the argument type,
which gets replaced with an unknown in the algorithm. The rule for
application assigns types to the function and argument separately,
then inserts an equation with a fresh name for the codomain type.

t : τ

β :=υ, x :: .β � t : τ
λx.t : υ ⊲ τ

f : χ a : υ β :=τ � χ ≡ υ ⊲ β
fa : τ

s :: σ x ::σ � w : τ
let x :=s in w : τ

t : τ τ ≡ υ
t : υ

Figure 7. Transformed rules for type assignment

We must verify that the rule systems in Figures 6 and 7 are
equivalent. This is mostly straightforward, as fresh name bindings
can be substituted out. The only difficulty is in the application rule,
where an equation is introduced. If an application has a type in the
old system, it can be assigned the same type in the new system
with using a reflexive equation. Conversely, if an application has a
type in the new system, then using the conversion with the equation
allows the same type to be assigned in the old system.

Given the transformed rules, we construct the algorithm to match.
We establish the type inference assertion Γ ◦ (t :) ։ ∆ • τ and
the scheme inference assertion Γ ◦ (s ::) ։ ∆ • σ by the rules in
Figure 8. As they are structural on terms, they yield a terminating
algorithm, and hence the implementation in Subsection 9.6. The
Optimist’s lemma permits sequential solution of problems and the
binding lemmas let us interpret binding statements as problems.

Γ ◦ (s ::) ։ ∆ • σ

GEN
(Γ#) ◦ (s :) ։ (∆ # Ξ) • υ
Γ ◦ (s ::) ։ ∆ • (Ξ ⇑ υ)

Γ ◦ (t :) ։ ∆ • τ

VAR
x :: (Ξ ⇑ υ) ∈ Γ

Γ ◦ (x :) ։ (Γ,Ξ) • υ

ABS
(Γ, α :=?, x :: .α) ◦ (w :) ։ (∆, x :: .α,Ξ) • υ

Γ ◦ (λx.w :) ։ (∆,Ξ) • (α ⊲ υ)
α /∈ VTY(Γ)

APP

Γ ◦ (f :) ։ ∆0 • χ ∆0 ◦ (a :) ։ ∆1 • υ

∆1, β :=? ։ ∆ ⊢ χ ≡ υ ⊲ β
Γ ◦ (fa :) ։ ∆ • β

β /∈ VTY(∆1)

LET

Γ ◦ (s ::) ։ ∆0 • σ

(∆0, x ::σ) ◦ (w :) ։ (∆, x ::σ,Ξ) • χ
Γ ◦ (let x :=s in w :) ։ (∆,Ξ) • χ

Figure 8. Algorithmic rules for type inference

9.5 Soundness and completeness

Since the algorithmic rules correspond directly to the transformed
declarative system in Figure 7, we can easily prove soundness,
completeness and generality of type inference with respect to this
system. Each proof is by induction on derivations, observing that
each algorithmic rule maintains the appropriate properties.

Recall that a type inference problem (Γ, P ) has statement t : τ
where t is a term and τ is the output type. A scheme inference
problem has statement t :: σ where σ is the output scheme.

Lemma 15 (Soundness of type inference). If (Γ, P ) is a type or
scheme inference problem, and Γ ◦ P ։ ∆ • a, then Γ ⊑ ∆ and
∆ ⊢ Pa.

Proof. We maintain this property as an invariant in all the rules.

To prove generality, we use the admissible rules in the Optimist’s,
Generalist’s and binding lemmas. The algorithmic rules map to
compositions of these, with multiple hypotheses corresponding
to conjunctions of problems. To apply the Optimist’s lemma, we
must check that the problem on the right satisfies the ‘simplicity
condition’. For LET, this means we need

Γ ⊢ σ ⊂:: σ
′ ∧ Γ, x ::σ′ ⊢ w : χ ⇒ Γ, x ::σ ⊢ w : χ,

which says that if a solution can be found with x having a given
type scheme then one can be found with it having a more general
scheme. The APP case is even more straightforward.

Lemma 16 (Generality of type inference). If (Γ, P ) is a type or

scheme inference problem, and Γ◦P ։ ∆•a, then Γ◦P ⊑̂∆•a.

Proof. Given soundness (Lemma 15), it remains to show generality,
i.e. that each algorithmic rule becomes admissible in the trans-

formed declarative system if we replace ։ with ⊑̂ .

For the VAR rule, suppose θ : Γ ⊑ Θ and Θ ⊢ x : τ . By inversion,
the proof must consist of the LOOKUP rule followed by eliminating
Θ  x :: (θΞ ⇑ θυ) with some Θ-types. Hence it determines a
map from the unbound type variables of Ξ to types over Θ, i.e. a
substitution ζ : Γ,Ξ ⊑ Θ that agrees with θ on Γ and maps type
variables in Ξ to their definitions in Θ.

All the remaining cases are covered by the previous lemmas. The
Generalist’s lemma proves exactly the property required for the
GEN rule. The ABS rule is minimal by Lemmas 13 and 14. The APP

rule is minimal by two uses of the Optimist’s lemma, Lemma 14
and minimality of unification. The LET rule is minimal by the
Optimist’s lemma and Lemma 13.

Lemma 17 (Completeness of type inference). If (Γ, P ) is a type
or scheme inference problem, and there exist θ : Γ ⊑ Θ and a′

such that Θ ⊢ (θP )a′, then Γ ◦ P ։ ∆ • a for some context ∆
and output a.

Proof. We proceed by induction on the derivation of Θ ⊢ (θP )a′.
Every case in the transformed declarative system (excluding the
conversion rule) is covered by the algorithm, and it reduces the
problem to an equivalent form, thereby preserving solutions. Thus
if a solution exists, then the algorithm will succeed.

9.6 Implementation of type inference

Figure 9 shows the Haskell implementation of our type inference
algorithm. Note that the monadic fail is called if scope checking
fails, whereas error signals violation of an algorithmic invariant.

Figure 9(a) implements type schemes. It is convenient to represent
bound variables by de Bruijn indices and free variables (in the con-
text) by names [McBride and McKinna 2004b]. We use Haskell’s
type system to prevent some incorrect manipulations of indices
by defining a ‘successor’ type Index, where the outermost bound
variable is represented by Z and other variables are wrapped in the
S constructor [Bellegarde and Hook 1994; Bird and Paterson 1999].



data Index a = Z | S a deriving (Functor,Foldable)

data Schm a = Type (Ty a)
| All (Schm (Index a))
| LetS (Ty a) (Schm (Index a))

deriving (Functor,Foldable)

type Scheme = Schm TyName

(a) Type schemes

specialise :: Scheme→ Contextual Type

specialise (Type τ ) = return τ
specialise σ = do

let (d , σ′) = unpack σ
β ← fresh d

specialise (fmap (fromS β) σ′)
where

unpack :: Scheme→ (TyDecl,Schm (Index TyName))
unpack (All σ′) = (? , σ′)
unpack (LetS τ σ′) = (!τ, σ′)

fromS :: TyName→ Index TyName→ TyName

fromS β Z = β
fromS β (S α) = α

(b) Specialisation

bind :: TyName→ Scheme→ Schm (Index TyName)
bind α = fmap help

where

help :: TyName→ Index TyName

help β | α ≡ β = Z

| otherwise = S β

(⇑) :: Suffix→ Type→ Scheme

E ⇑ τ = Type τ
(α:=? :> Ξ) ⇑ τ = All (bind α (Ξ ⇑ τ ))
(α:=!υ :> Ξ) ⇑ τ = LetS υ (bind α (Ξ ⇑ τ ))

generaliseOver :: Contextual Type→ Contextual Scheme

generaliseOver mt = do

modifyContext (:<#)
τ ← mt

Ξ← skimContext E

return (Ξ ⇑ τ )
where

skimContext :: Suffix→ Contextual Suffix

skimContext Ξ = do

Γ :< vD ← getContext

putContext Γ
case vD of

# → return Ξ
TY αD → skimContext (αD :> Ξ)
TM → error "Unexpected TM variable!"

(c) Generalisation

data Tm a = X a

| Tm a :$ Tm a

| Lam a (Tm a)
| Let a (Tm a) (Tm a)

deriving (Functor,Foldable)

type TmName = String

type Term = Tm TmName

data TmEntry = TmName ::Scheme

data Entry = TY TyEntry | TM TmEntry | #

find :: TmName→ Contextual Scheme

find x = getContext >>= help

where

help :: Context→ Contextual Scheme

help (Γ :< TM (y ::σ)) | x ≡ y = return σ
help (Γ :< ) = help Γ
help E = fail "Missing var!"

(d) Terms and context entries

(�) :: TmEntry→ Contextual a → Contextual a

x ::σ � ma = do

modifyContext (:<TM (x ::σ))
a ← ma

modifyContext extract

return a

where

extract :: Context→ Context

extract (Γ :< TM (y :: )) | x ≡ y = Γ
extract (Γ :< TY xD) = (extract Γ) :< TY xD

extract (Γ :< ) = error "Bad context entry!"

extract E = error "Missing TM variable!"

(e) Bringing term variables into scope

infer :: Term→ Contextual Type

infer (X x) = find x >>= specialise

infer (Lam x w) = do

α← fresh ?
υ ← x ::Type (V α) � infer w

return (V α ⊲ υ)

infer (f :$ a) = do

χ ← infer f

υ ← infer a

β ← fresh ?
unify χ (υ ⊲ V β)
return (V β)

infer (Let x s w) = do

σ ← generaliseOver (infer s)
x ::σ � infer w

(f) Type inference

Figure 9. Haskell implementation of type inference



Figures 9(b) and 9(c) implement specialisation and generalisation
of type schemes. The former unpacks a scheme with fresh names;
the latter ‘skims’ entries off the top of the context to the # marker.

Figure 9(d) implements the data type of terms, and gives the final
definition of Entry including type and term variable declarations
and # markers. It implements the find function to look up a term
variable in the context and return its scheme.

Figure 9(e) implements the (�) operator to evaluate Contextual
code in the scope of a term variable, then remove it afterwards.
This is necessary for dealing with λ-abstractions and let-bindings.

Finally, Figure 9(f) implements the type inference algorithm itself.
It proceeds structurally over the term, following the rules in
Figure 8 and using the monadic operations.

10. Discussion

We have arrived at an implementation of Hindley-Milner type
inference which involves all the same steps as Algorithm W, but not
necessarily in the same order. In particular, the dependency panic
which seizes W in the let-rule here becomes an invariant that the
underlying unification algorithm maintain a well-founded context.

Our algorithm is presented as a problem transformation system lo-
cally preserving all possible solutions, hence finding a most general
global solution if any at all. Accumulating solutions to decomposed
problems is justified simply by stability of solutions on information
increase. We have established a discipline of problem solving,
happily complete for Hindley-Milner type inference, but in any
case coupling soundness with generality.

Maintain context validity, make definitions anywhere and only
where there is no choice, so the solutions you find will be general
and generalisable locally: this is a key design principle for elabora-
tion of high-level code in systems like Epigram and Agda; bugs
arise from its transgression. Our disciplined account of ‘current
information’ in terms of contexts and their information ordering
provides a principled means to investigate and repair these troubles.

We are, however, missing yet more context. Our task was greatly
simplified by studying a structural type inference process for
‘finished’ expressions in a setting where unification is complete.
Each subproblem is either solved or rejected on first inspection—
there is never a need for a ‘later, perhaps’ outcome. As a result,
‘direct style’ recursive programming is adequate to the task. If
problems could get stuck, how might we abandon them and return
to them later? By storing their context, of course!

Here, we have combined the linguistic contexts for various sorts
of variable; our next acquisition is the syntactic context of the
target term, interspersing variable declarations with pieces of its
zipper [Huet 1997]. We thus enable a flexible traversal strategy,
refocusing wherever progress can be made. The tree-like proof
states of McBride’s thesis evolved into exactly such ‘zippers with
binding’ in the implementation of Epigram.

As we have seen, ‘information increase’ is really the elabora-
tion of simultaneous substitution from variables-and-terms to
declarations-and-derivations. Our analysis of role declaration
plays in derivation shows that stability is endemic—an action
of hereditary substitution on ‘cut-free’ derivations. And that is
just what it should be. We have rationalised Hindley-Milner type
inference, adapting a discipline for incremental term construction
in dependent types to manage unknowns for incremental problem
solving. The analysis can only become clearer, the technology
simpler, as we identify these two kinds of construction, mediating
problems as types.
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